Sanjeev Kumar , Ab Waheed Wani , Rupesh Kaushik , Harjinder Kaur , Djajadi Djajadi , Aniswatul Khamidah , Saidah , Nada Alasbali , Maha Awjan Alreshidi , Mir Waqas Alam , Krishna Kumar Yadav , Atif Khurshid Wani
{"title":"驾驭精准园艺:数字时代的可持续农业","authors":"Sanjeev Kumar , Ab Waheed Wani , Rupesh Kaushik , Harjinder Kaur , Djajadi Djajadi , Aniswatul Khamidah , Saidah , Nada Alasbali , Maha Awjan Alreshidi , Mir Waqas Alam , Krishna Kumar Yadav , Atif Khurshid Wani","doi":"10.1016/j.scienta.2024.113688","DOIUrl":null,"url":null,"abstract":"<div><div>Automation, autonomy, and precision play vital roles in modern technology and procedures, especially in response to the rising global population and the need for improved fruit production technologies. The quality criteria for fruit yield are becoming increasingly complex, necessitating fundamental upgrades. Sensor-based technologies pave the way for more rational and efficient soil usage. Precision farming, an advanced agricultural approach, employs software technologies and principles to optimize various aspects of horticultural production. Its goal is to enhance crop yields and promote environmental sustainability by managing spatial and temporal variations. Precision horticulture, a cutting-edge farming method, focuses on increasing crop yields and quality while minimizing environmental impact. This approach leverages advanced technology and data-driven decision-making. By utilizing sensors, robots, drones, and other innovative tools for yield mapping, irrigation control, robotic harvesting, nutrient and pesticide application, soil sensing, and crop growth analysis, growers can monitor plant growth and health, identify potential issues, and make informed crop management decisions. Tailoring practices to specific plant needs can lead to higher yields, improved product quality, and reduced environmental impact. Overall, precision horticulture holds significant promise for promoting sustainable agricultural practices while meeting the increasing demand for food production.</div></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"338 ","pages":"Article 113688"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the landscape of precision horticulture: Sustainable agriculture in the digital Age\",\"authors\":\"Sanjeev Kumar , Ab Waheed Wani , Rupesh Kaushik , Harjinder Kaur , Djajadi Djajadi , Aniswatul Khamidah , Saidah , Nada Alasbali , Maha Awjan Alreshidi , Mir Waqas Alam , Krishna Kumar Yadav , Atif Khurshid Wani\",\"doi\":\"10.1016/j.scienta.2024.113688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automation, autonomy, and precision play vital roles in modern technology and procedures, especially in response to the rising global population and the need for improved fruit production technologies. The quality criteria for fruit yield are becoming increasingly complex, necessitating fundamental upgrades. Sensor-based technologies pave the way for more rational and efficient soil usage. Precision farming, an advanced agricultural approach, employs software technologies and principles to optimize various aspects of horticultural production. Its goal is to enhance crop yields and promote environmental sustainability by managing spatial and temporal variations. Precision horticulture, a cutting-edge farming method, focuses on increasing crop yields and quality while minimizing environmental impact. This approach leverages advanced technology and data-driven decision-making. By utilizing sensors, robots, drones, and other innovative tools for yield mapping, irrigation control, robotic harvesting, nutrient and pesticide application, soil sensing, and crop growth analysis, growers can monitor plant growth and health, identify potential issues, and make informed crop management decisions. Tailoring practices to specific plant needs can lead to higher yields, improved product quality, and reduced environmental impact. Overall, precision horticulture holds significant promise for promoting sustainable agricultural practices while meeting the increasing demand for food production.</div></div>\",\"PeriodicalId\":21679,\"journal\":{\"name\":\"Scientia Horticulturae\",\"volume\":\"338 \",\"pages\":\"Article 113688\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304423824008410\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824008410","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Navigating the landscape of precision horticulture: Sustainable agriculture in the digital Age
Automation, autonomy, and precision play vital roles in modern technology and procedures, especially in response to the rising global population and the need for improved fruit production technologies. The quality criteria for fruit yield are becoming increasingly complex, necessitating fundamental upgrades. Sensor-based technologies pave the way for more rational and efficient soil usage. Precision farming, an advanced agricultural approach, employs software technologies and principles to optimize various aspects of horticultural production. Its goal is to enhance crop yields and promote environmental sustainability by managing spatial and temporal variations. Precision horticulture, a cutting-edge farming method, focuses on increasing crop yields and quality while minimizing environmental impact. This approach leverages advanced technology and data-driven decision-making. By utilizing sensors, robots, drones, and other innovative tools for yield mapping, irrigation control, robotic harvesting, nutrient and pesticide application, soil sensing, and crop growth analysis, growers can monitor plant growth and health, identify potential issues, and make informed crop management decisions. Tailoring practices to specific plant needs can lead to higher yields, improved product quality, and reduced environmental impact. Overall, precision horticulture holds significant promise for promoting sustainable agricultural practices while meeting the increasing demand for food production.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.