{"title":"串联弹性执行的被动实现:设备和控制器动力学对触觉渲染性能的影响","authors":"Celal Umut Kenanoglu, Volkan Patoglu","doi":"10.1109/TOH.2024.3470236","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce minimal passive physical realizations of series (damped) elastic actuation (S(D)EA) under closed-loop control to determine the effect of different plant parameters and controller gains on the closed-loop performance of the system and to establish an intuitive understanding of the passivity bounds. Furthermore, we explicitly derive the feasibility conditions for these passive physical equivalents and compare them to the necessary and sufficient conditions for the passivity of S(D)EA under velocity-sourced impedance control (VSIC) to establish their relationship. Through the passive physical equivalents, we rigorously compare the effect of different plant dynamics (e.g., SEA and SDEA) on the system performance. We demonstrate that passive physical equivalents make the effect of controller gains explicit and establish a natural means for effective impedance analysis. We also show that passive physical equivalents promote co-design thinking by enforcing simultaneous and unbiased consideration of (possibly negative) controller gains and plant parameters. We demonstrate the usefulness of negative controller gains when coupled with properly designed plant dynamics. Finally, we provide experimental validations of our theoretical passivity results and comprehensive characterizations of the haptic rendering performance of S(D)EA under VSIC.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance.\",\"authors\":\"Celal Umut Kenanoglu, Volkan Patoglu\",\"doi\":\"10.1109/TOH.2024.3470236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce minimal passive physical realizations of series (damped) elastic actuation (S(D)EA) under closed-loop control to determine the effect of different plant parameters and controller gains on the closed-loop performance of the system and to establish an intuitive understanding of the passivity bounds. Furthermore, we explicitly derive the feasibility conditions for these passive physical equivalents and compare them to the necessary and sufficient conditions for the passivity of S(D)EA under velocity-sourced impedance control (VSIC) to establish their relationship. Through the passive physical equivalents, we rigorously compare the effect of different plant dynamics (e.g., SEA and SDEA) on the system performance. We demonstrate that passive physical equivalents make the effect of controller gains explicit and establish a natural means for effective impedance analysis. We also show that passive physical equivalents promote co-design thinking by enforcing simultaneous and unbiased consideration of (possibly negative) controller gains and plant parameters. We demonstrate the usefulness of negative controller gains when coupled with properly designed plant dynamics. Finally, we provide experimental validations of our theoretical passivity results and comprehensive characterizations of the haptic rendering performance of S(D)EA under VSIC.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2024.3470236\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3470236","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance.
We introduce minimal passive physical realizations of series (damped) elastic actuation (S(D)EA) under closed-loop control to determine the effect of different plant parameters and controller gains on the closed-loop performance of the system and to establish an intuitive understanding of the passivity bounds. Furthermore, we explicitly derive the feasibility conditions for these passive physical equivalents and compare them to the necessary and sufficient conditions for the passivity of S(D)EA under velocity-sourced impedance control (VSIC) to establish their relationship. Through the passive physical equivalents, we rigorously compare the effect of different plant dynamics (e.g., SEA and SDEA) on the system performance. We demonstrate that passive physical equivalents make the effect of controller gains explicit and establish a natural means for effective impedance analysis. We also show that passive physical equivalents promote co-design thinking by enforcing simultaneous and unbiased consideration of (possibly negative) controller gains and plant parameters. We demonstrate the usefulness of negative controller gains when coupled with properly designed plant dynamics. Finally, we provide experimental validations of our theoretical passivity results and comprehensive characterizations of the haptic rendering performance of S(D)EA under VSIC.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.