{"title":"特定食品衍生多糖水凝胶的生物医学应用和营养价值。","authors":"Qianru Xiang , Yuting Hao , Zijun Xia , Meiqi Liao , Xinkai Rao , Shenghui Lao , Qi He , Congshun Ma , Wenzhen Liao","doi":"10.1016/j.advnut.2024.100309","DOIUrl":null,"url":null,"abstract":"<div><div>Food-derived polysaccharide-based hydrogels (FPBHs), which are composed of polysaccharides derived from food sources exhibit great potential for biomedical applications. The FPBHs possess a wide range of biological activities and can be utilized in the treatment of various clinical diseases. However, the majority of research efforts have predominantly focused on nonspecific polysaccharides derived from various sources (most plants, animals, and microorganisms), whereas the exploration of hydrogels originating from specific polysaccharides with distinct bioactivity extracted from natural food sources remains limited. In this review, a comprehensive search was conducted across 3 major databases (PubMed, Web of Science, and Medline) until October 24, 2024 to include 32 studies that employed FPBHs for biomedical applications. This review provides an overview of hydrogels based on specific food-derived polysaccharides by summarizing their types, sources, molecular weight, monosaccharide composition, and biological activities. The crosslinking strategies employed in the fabrication of FPBHs were demonstrated. The attributes and characteristics of FPBHs were delined, including their physical, chemical, and functional properties. Of particular note, the review highlights <em>in vivo</em> and <em>in vitro</em> studies exploring the biomedical applications of FPBHs and delve into the nutritional value of specific food-derived polysaccharides. The challenges encountered in basic research involving FPBHs were enumerated as well as limitation in their clinical practice. Finally, the potential market outlook for FPBHs in the future was also discussed.</div></div>","PeriodicalId":7349,"journal":{"name":"Advances in Nutrition","volume":"15 11","pages":"Article 100309"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomedical Applications and Nutritional Value of Specific Food-Derived Polysaccharide-Based Hydrogels\",\"authors\":\"Qianru Xiang , Yuting Hao , Zijun Xia , Meiqi Liao , Xinkai Rao , Shenghui Lao , Qi He , Congshun Ma , Wenzhen Liao\",\"doi\":\"10.1016/j.advnut.2024.100309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Food-derived polysaccharide-based hydrogels (FPBHs), which are composed of polysaccharides derived from food sources exhibit great potential for biomedical applications. The FPBHs possess a wide range of biological activities and can be utilized in the treatment of various clinical diseases. However, the majority of research efforts have predominantly focused on nonspecific polysaccharides derived from various sources (most plants, animals, and microorganisms), whereas the exploration of hydrogels originating from specific polysaccharides with distinct bioactivity extracted from natural food sources remains limited. In this review, a comprehensive search was conducted across 3 major databases (PubMed, Web of Science, and Medline) until October 24, 2024 to include 32 studies that employed FPBHs for biomedical applications. This review provides an overview of hydrogels based on specific food-derived polysaccharides by summarizing their types, sources, molecular weight, monosaccharide composition, and biological activities. The crosslinking strategies employed in the fabrication of FPBHs were demonstrated. The attributes and characteristics of FPBHs were delined, including their physical, chemical, and functional properties. Of particular note, the review highlights <em>in vivo</em> and <em>in vitro</em> studies exploring the biomedical applications of FPBHs and delve into the nutritional value of specific food-derived polysaccharides. The challenges encountered in basic research involving FPBHs were enumerated as well as limitation in their clinical practice. Finally, the potential market outlook for FPBHs in the future was also discussed.</div></div>\",\"PeriodicalId\":7349,\"journal\":{\"name\":\"Advances in Nutrition\",\"volume\":\"15 11\",\"pages\":\"Article 100309\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2161831324001431\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nutrition","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2161831324001431","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Biomedical Applications and Nutritional Value of Specific Food-Derived Polysaccharide-Based Hydrogels
Food-derived polysaccharide-based hydrogels (FPBHs), which are composed of polysaccharides derived from food sources exhibit great potential for biomedical applications. The FPBHs possess a wide range of biological activities and can be utilized in the treatment of various clinical diseases. However, the majority of research efforts have predominantly focused on nonspecific polysaccharides derived from various sources (most plants, animals, and microorganisms), whereas the exploration of hydrogels originating from specific polysaccharides with distinct bioactivity extracted from natural food sources remains limited. In this review, a comprehensive search was conducted across 3 major databases (PubMed, Web of Science, and Medline) until October 24, 2024 to include 32 studies that employed FPBHs for biomedical applications. This review provides an overview of hydrogels based on specific food-derived polysaccharides by summarizing their types, sources, molecular weight, monosaccharide composition, and biological activities. The crosslinking strategies employed in the fabrication of FPBHs were demonstrated. The attributes and characteristics of FPBHs were delined, including their physical, chemical, and functional properties. Of particular note, the review highlights in vivo and in vitro studies exploring the biomedical applications of FPBHs and delve into the nutritional value of specific food-derived polysaccharides. The challenges encountered in basic research involving FPBHs were enumerated as well as limitation in their clinical practice. Finally, the potential market outlook for FPBHs in the future was also discussed.
期刊介绍:
Advances in Nutrition (AN/Adv Nutr) publishes focused reviews on pivotal findings and recent research across all domains relevant to nutritional scientists and biomedical researchers. This encompasses nutrition-related research spanning biochemical, molecular, and genetic studies using experimental animal models, domestic animals, and human subjects. The journal also emphasizes clinical nutrition, epidemiology and public health, and nutrition education. Review articles concentrate on recent progress rather than broad historical developments.
In addition to review articles, AN includes Perspectives, Letters to the Editor, and supplements. Supplement proposals require pre-approval by the editor before submission. The journal features reports and position papers from the American Society for Nutrition, summaries of major government and foundation reports, and Nutrient Information briefs providing crucial details about dietary requirements, food sources, deficiencies, and other essential nutrient information. All submissions with scientific content undergo peer review by the Editors or their designees prior to acceptance for publication.