聚合物心脏瓣叶几何配置和结构优化综述。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yinkui Wu, Jingyuan Zhou, Tao Li, Lu Chen, Yan Xiong, Yu Chen
{"title":"聚合物心脏瓣叶几何配置和结构优化综述。","authors":"Yinkui Wu, Jingyuan Zhou, Tao Li, Lu Chen, Yan Xiong, Yu Chen","doi":"10.1080/10255842.2024.2410232","DOIUrl":null,"url":null,"abstract":"<p><p>Valvular heart disease (VHD) is a major cause of loss of physical function, quality of life and longevity, and its prevalence is growing worldwide due to increased survival rates and an aging population. The most common treatment for VHD is surgical heart valve replacement with mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs), but with different limitations. Polymeric heart valves (PHVs) exhibit promising material properties, valve dynamics and biocompatibility, representing the most feasible alternative to existing artificial heart valves. However, inadequate fatigue performance remains a critical obstacle to their clinical translation. In this case, geometry and material design are essential to obtain the best mechanical properties of the PHV. In this study, we summarized the effects of optimal design of PHVs from geometrical configuration optimization (valve height, thickness and design curve) and structural material optimization (anisotropy, fiber reinforcement, variable thickness, microstructure and asymmetric optimization), and selected the parameters including Effective Orifice Area (EOA), Regurgitant fraction (RF), and Stress Distribution to compare the performance of valves. It would provide the theoretical support for the optimal design of PHVs.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of polymeric heart valves leaflet geometric configuration and structural optimization.\",\"authors\":\"Yinkui Wu, Jingyuan Zhou, Tao Li, Lu Chen, Yan Xiong, Yu Chen\",\"doi\":\"10.1080/10255842.2024.2410232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Valvular heart disease (VHD) is a major cause of loss of physical function, quality of life and longevity, and its prevalence is growing worldwide due to increased survival rates and an aging population. The most common treatment for VHD is surgical heart valve replacement with mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs), but with different limitations. Polymeric heart valves (PHVs) exhibit promising material properties, valve dynamics and biocompatibility, representing the most feasible alternative to existing artificial heart valves. However, inadequate fatigue performance remains a critical obstacle to their clinical translation. In this case, geometry and material design are essential to obtain the best mechanical properties of the PHV. In this study, we summarized the effects of optimal design of PHVs from geometrical configuration optimization (valve height, thickness and design curve) and structural material optimization (anisotropy, fiber reinforcement, variable thickness, microstructure and asymmetric optimization), and selected the parameters including Effective Orifice Area (EOA), Regurgitant fraction (RF), and Stress Distribution to compare the performance of valves. It would provide the theoretical support for the optimal design of PHVs.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2410232\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2410232","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

瓣膜性心脏病(VHD)是导致身体功能丧失、生活质量下降和寿命延长的主要原因,由于存活率提高和人口老龄化,其发病率在全球范围内不断上升。治疗心脏瓣膜病最常见的方法是通过外科手术置换心脏瓣膜,包括机械心脏瓣膜(MHV)和生物人工心脏瓣膜(BHV),但两者各有不同的局限性。聚合物心脏瓣膜(PHV)具有良好的材料特性、瓣膜动力学和生物相容性,是现有人工心脏瓣膜最可行的替代品。然而,疲劳性能不足仍是其临床应用的关键障碍。在这种情况下,几何形状和材料设计对于获得 PHV 的最佳机械性能至关重要。在这项研究中,我们从几何结构优化(瓣膜高度、厚度和设计曲线)和结构材料优化(各向异性、纤维增强、可变厚度、微结构和非对称优化)两方面总结了 PHV 优化设计的效果,并选择了有效孔面积(EOA)、反流率(RF)和应力分布等参数来比较瓣膜的性能。这将为 PHV 的优化设计提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of polymeric heart valves leaflet geometric configuration and structural optimization.

Valvular heart disease (VHD) is a major cause of loss of physical function, quality of life and longevity, and its prevalence is growing worldwide due to increased survival rates and an aging population. The most common treatment for VHD is surgical heart valve replacement with mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs), but with different limitations. Polymeric heart valves (PHVs) exhibit promising material properties, valve dynamics and biocompatibility, representing the most feasible alternative to existing artificial heart valves. However, inadequate fatigue performance remains a critical obstacle to their clinical translation. In this case, geometry and material design are essential to obtain the best mechanical properties of the PHV. In this study, we summarized the effects of optimal design of PHVs from geometrical configuration optimization (valve height, thickness and design curve) and structural material optimization (anisotropy, fiber reinforcement, variable thickness, microstructure and asymmetric optimization), and selected the parameters including Effective Orifice Area (EOA), Regurgitant fraction (RF), and Stress Distribution to compare the performance of valves. It would provide the theoretical support for the optimal design of PHVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信