菊粉对作为维生素 B12 给药系统的核壳水凝胶珠的结构、理化和体外胃肠道释放特性的影响

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
{"title":"菊粉对作为维生素 B12 给药系统的核壳水凝胶珠的结构、理化和体外胃肠道释放特性的影响","authors":"","doi":"10.1016/j.foodchem.2024.141351","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, core-shell hydrogel beads were developed as a controlled-release delivery system for vitamin B12. Vitamin B12-loaded microgels (MG) were prepared using gellan gum (GG). Core-shell hydrogel beads were produced by incorporating MG into pea protein isolate (PPI) and sodium alginate (AL) matrix filled/coated with different concentrations (0 %, 1 %, 3 %, 5 %, and 10 %) of inulin (IN). Based on XRD analysis, MG was successfully incorporated into core-shell hydrogel beads. In FE-SEM and FT-IR analyses, the smoother surface and denser structure of the beads were observed as IN concentration increased due to hydrogen bonds between IN and the beads. The encapsulation efficiency increased from 68.64 % to 82.36 % as IN concentration increased from 0 % to 10 %, respectively. After exposure to simulated oral and gastric conditions, core-shell hydrogel beads exhibited a lower cumulative release than MG, and a more sustained release was observed as IN concentration increased in simulated intestinal conditions.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of inulin on structural, physicochemical, and in vitro gastrointestinal tract release properties of core-shell hydrogel beads as a delivery system for vitamin B12\",\"authors\":\"\",\"doi\":\"10.1016/j.foodchem.2024.141351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, core-shell hydrogel beads were developed as a controlled-release delivery system for vitamin B12. Vitamin B12-loaded microgels (MG) were prepared using gellan gum (GG). Core-shell hydrogel beads were produced by incorporating MG into pea protein isolate (PPI) and sodium alginate (AL) matrix filled/coated with different concentrations (0 %, 1 %, 3 %, 5 %, and 10 %) of inulin (IN). Based on XRD analysis, MG was successfully incorporated into core-shell hydrogel beads. In FE-SEM and FT-IR analyses, the smoother surface and denser structure of the beads were observed as IN concentration increased due to hydrogen bonds between IN and the beads. The encapsulation efficiency increased from 68.64 % to 82.36 % as IN concentration increased from 0 % to 10 %, respectively. After exposure to simulated oral and gastric conditions, core-shell hydrogel beads exhibited a lower cumulative release than MG, and a more sustained release was observed as IN concentration increased in simulated intestinal conditions.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624030012\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624030012","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了核壳水凝胶珠,作为维生素 B12 的控释递送系统。使用结冷胶(GG)制备了维生素 B12 负载微凝胶(MG)。将 MG 加入填充/涂有不同浓度(0 %、1 %、3 %、5 % 和 10 %)菊粉(IN)的豌豆蛋白分离物(PPI)和海藻酸钠(AL)基质中,制成了核壳水凝胶珠。根据 XRD 分析,MG 成功地融入了核壳水凝胶珠中。在 FE-SEM 和 FT-IR 分析中,由于 IN 与珠子之间的氢键作用,随着 IN 浓度的增加,珠子的表面更加光滑,结构更加致密。随着 IN 浓度从 0% 增加到 10%,封装效率分别从 68.64% 增加到 82.36%。在模拟口腔和胃部条件下,核壳水凝胶珠的累积释放量低于 MG,而在模拟肠道条件下,随着 IN 浓度的增加,可观察到更持久的释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of inulin on structural, physicochemical, and in vitro gastrointestinal tract release properties of core-shell hydrogel beads as a delivery system for vitamin B12

Effect of inulin on structural, physicochemical, and in vitro gastrointestinal tract release properties of core-shell hydrogel beads as a delivery system for vitamin B12
In this study, core-shell hydrogel beads were developed as a controlled-release delivery system for vitamin B12. Vitamin B12-loaded microgels (MG) were prepared using gellan gum (GG). Core-shell hydrogel beads were produced by incorporating MG into pea protein isolate (PPI) and sodium alginate (AL) matrix filled/coated with different concentrations (0 %, 1 %, 3 %, 5 %, and 10 %) of inulin (IN). Based on XRD analysis, MG was successfully incorporated into core-shell hydrogel beads. In FE-SEM and FT-IR analyses, the smoother surface and denser structure of the beads were observed as IN concentration increased due to hydrogen bonds between IN and the beads. The encapsulation efficiency increased from 68.64 % to 82.36 % as IN concentration increased from 0 % to 10 %, respectively. After exposure to simulated oral and gastric conditions, core-shell hydrogel beads exhibited a lower cumulative release than MG, and a more sustained release was observed as IN concentration increased in simulated intestinal conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信