Doaa H. Mohamed , Riham S. Said , Dina H. Kassem , Amany M. Gad , Ebtehal El-Demerdash , Eman M. Mantawy
{"title":"橙皮甙可减轻辐射诱导的大鼠卵巢功能衰竭:强调TLR-4/NF-ĸB信号通路","authors":"Doaa H. Mohamed , Riham S. Said , Dina H. Kassem , Amany M. Gad , Ebtehal El-Demerdash , Eman M. Mantawy","doi":"10.1016/j.taap.2024.117111","DOIUrl":null,"url":null,"abstract":"<div><div>Young women suffering from premature ovarian failure after radiotherapy carry a huge burden in the field of cancer therapy including reproductive loss, emotional stress, and physical troubles that reduce their long-term quality of life. Hesperidin (HSP) exhibited antioxidant, anti-inflammatory, and anti-apoptotic properties. HSP enhanced in vitro follicular maturation and preserved in vivo ovarian stockpile. In this research, the role of HSP in radiation-induced POF in rats was investigated besides ascertaining its underlying mechanisms. Female Sprague-Dawley rats were arbitrarily allocated into four groups: control-group, ϒ-irradiated-group (3.2 Gy once on the 7th day), HSP-group (100 mg/kg, orally for 10 days), and HSP/ϒ-irradiated-group (ϒ-radiation was applied one hour after HSP). At the end of experiment, the whole ovaries were collected for histological and biochemical analyses. Administration of HSP preserved the ovarian histoarchitecture and follicular stock, retained ovarian weight, and conserved serum estradiol and AMH levels following radiation exposure. HSP ameliorated the ovarian oxidative damage mediated by radiation through augmenting the activities of glutathione peroxidase, glutathione reductase, and catalase antioxidant enzymes. HSP exhibited remarkable anti-inflammatory activity by downregulating the expression of ovarian TLR-4, NF-ĸB, and TNF-α. Moreover, HSP suppressed the apoptotic machinery triggered by radiation by reducing p53 and Bax while increasing Bcl-2 mRNA expressions alongside diminishing caspase-3 expression. Additionally, HSP regulated estrous cycle disorder of irradiated rats and improved their reproductive capacity reflected by enhancing pregnancy outcomes. Therefore, HSP represents an appealing candidate as an adjunct remedy for female cancer patients during radiotherapy protocols owing to its antioxidant, anti-inflammatory, anti-apoptotic, and hormone-regulatory effects.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"492 ","pages":"Article 117111"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hesperidin attenuates radiation-induced ovarian failure in rats: Emphasis on TLR-4/NF-ĸB signaling pathway\",\"authors\":\"Doaa H. Mohamed , Riham S. Said , Dina H. Kassem , Amany M. Gad , Ebtehal El-Demerdash , Eman M. Mantawy\",\"doi\":\"10.1016/j.taap.2024.117111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Young women suffering from premature ovarian failure after radiotherapy carry a huge burden in the field of cancer therapy including reproductive loss, emotional stress, and physical troubles that reduce their long-term quality of life. Hesperidin (HSP) exhibited antioxidant, anti-inflammatory, and anti-apoptotic properties. HSP enhanced in vitro follicular maturation and preserved in vivo ovarian stockpile. In this research, the role of HSP in radiation-induced POF in rats was investigated besides ascertaining its underlying mechanisms. Female Sprague-Dawley rats were arbitrarily allocated into four groups: control-group, ϒ-irradiated-group (3.2 Gy once on the 7th day), HSP-group (100 mg/kg, orally for 10 days), and HSP/ϒ-irradiated-group (ϒ-radiation was applied one hour after HSP). At the end of experiment, the whole ovaries were collected for histological and biochemical analyses. Administration of HSP preserved the ovarian histoarchitecture and follicular stock, retained ovarian weight, and conserved serum estradiol and AMH levels following radiation exposure. HSP ameliorated the ovarian oxidative damage mediated by radiation through augmenting the activities of glutathione peroxidase, glutathione reductase, and catalase antioxidant enzymes. HSP exhibited remarkable anti-inflammatory activity by downregulating the expression of ovarian TLR-4, NF-ĸB, and TNF-α. Moreover, HSP suppressed the apoptotic machinery triggered by radiation by reducing p53 and Bax while increasing Bcl-2 mRNA expressions alongside diminishing caspase-3 expression. Additionally, HSP regulated estrous cycle disorder of irradiated rats and improved their reproductive capacity reflected by enhancing pregnancy outcomes. Therefore, HSP represents an appealing candidate as an adjunct remedy for female cancer patients during radiotherapy protocols owing to its antioxidant, anti-inflammatory, anti-apoptotic, and hormone-regulatory effects.</div></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":\"492 \",\"pages\":\"Article 117111\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X24003107\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24003107","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Hesperidin attenuates radiation-induced ovarian failure in rats: Emphasis on TLR-4/NF-ĸB signaling pathway
Young women suffering from premature ovarian failure after radiotherapy carry a huge burden in the field of cancer therapy including reproductive loss, emotional stress, and physical troubles that reduce their long-term quality of life. Hesperidin (HSP) exhibited antioxidant, anti-inflammatory, and anti-apoptotic properties. HSP enhanced in vitro follicular maturation and preserved in vivo ovarian stockpile. In this research, the role of HSP in radiation-induced POF in rats was investigated besides ascertaining its underlying mechanisms. Female Sprague-Dawley rats were arbitrarily allocated into four groups: control-group, ϒ-irradiated-group (3.2 Gy once on the 7th day), HSP-group (100 mg/kg, orally for 10 days), and HSP/ϒ-irradiated-group (ϒ-radiation was applied one hour after HSP). At the end of experiment, the whole ovaries were collected for histological and biochemical analyses. Administration of HSP preserved the ovarian histoarchitecture and follicular stock, retained ovarian weight, and conserved serum estradiol and AMH levels following radiation exposure. HSP ameliorated the ovarian oxidative damage mediated by radiation through augmenting the activities of glutathione peroxidase, glutathione reductase, and catalase antioxidant enzymes. HSP exhibited remarkable anti-inflammatory activity by downregulating the expression of ovarian TLR-4, NF-ĸB, and TNF-α. Moreover, HSP suppressed the apoptotic machinery triggered by radiation by reducing p53 and Bax while increasing Bcl-2 mRNA expressions alongside diminishing caspase-3 expression. Additionally, HSP regulated estrous cycle disorder of irradiated rats and improved their reproductive capacity reflected by enhancing pregnancy outcomes. Therefore, HSP represents an appealing candidate as an adjunct remedy for female cancer patients during radiotherapy protocols owing to its antioxidant, anti-inflammatory, anti-apoptotic, and hormone-regulatory effects.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.