整合机器学习技术,预测打桩活动中的地面振动

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"整合机器学习技术,预测打桩活动中的地面振动","authors":"","doi":"10.1016/j.compgeo.2024.106784","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the assessment of ground vibrations due to pile driving activities. Given the likelihood of excessive vibration due to the driving process, it is imperative to predict vibration levels during the design phase. The primary goal of this work is to integrate machine learning techniques, specifically Extreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANNs) for real-time vibration prediction. The training dataset was generated using a validated numerical model and the trained models were validated based on experimental results. This validation process highlights the efficiency and accuracy of Extreme Gradient Boosting in predicting the-free-field response of the ground.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning techniques for predicting ground vibration in pile driving activities\",\"authors\":\"\",\"doi\":\"10.1016/j.compgeo.2024.106784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on the assessment of ground vibrations due to pile driving activities. Given the likelihood of excessive vibration due to the driving process, it is imperative to predict vibration levels during the design phase. The primary goal of this work is to integrate machine learning techniques, specifically Extreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANNs) for real-time vibration prediction. The training dataset was generated using a validated numerical model and the trained models were validated based on experimental results. This validation process highlights the efficiency and accuracy of Extreme Gradient Boosting in predicting the-free-field response of the ground.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X24007237\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007237","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是评估打桩活动引起的地面振动。鉴于打桩过程中可能会产生过大的振动,因此在设计阶段预测振动水平势在必行。这项工作的主要目标是整合机器学习技术,特别是用于实时振动预测的极端梯度提升(XGBoost)和人工神经网络(ANN)。训练数据集是使用经过验证的数值模型生成的,并根据实验结果对训练模型进行验证。这一验证过程凸显了极梯度提升技术在预测地面自由场响应方面的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating machine learning techniques for predicting ground vibration in pile driving activities
This study focuses on the assessment of ground vibrations due to pile driving activities. Given the likelihood of excessive vibration due to the driving process, it is imperative to predict vibration levels during the design phase. The primary goal of this work is to integrate machine learning techniques, specifically Extreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANNs) for real-time vibration prediction. The training dataset was generated using a validated numerical model and the trained models were validated based on experimental results. This validation process highlights the efficiency and accuracy of Extreme Gradient Boosting in predicting the-free-field response of the ground.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信