声学晶体中孤立韦尔点诱导的非均质扇形表面状态及相关多频声波滤波器

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhe-Qi Wang , Xiang-Feng Yang , Hua-Hua Fu
{"title":"声学晶体中孤立韦尔点诱导的非均质扇形表面状态及相关多频声波滤波器","authors":"Zhe-Qi Wang ,&nbsp;Xiang-Feng Yang ,&nbsp;Hua-Hua Fu","doi":"10.1016/j.mtphys.2024.101553","DOIUrl":null,"url":null,"abstract":"<div><div>The nontrivial surface states excited by isolated Weyl points (IWPs) have been scarcely studied to date, primarily due to their circumvention from the Nielsen-Ninomiya no-go theorem. In a groundbreaking study on this topic [Adv. Sci., 10, 2207508 (2023)], we discovered that IWPs can generate a novel nontrivial surface state, namely the multi-fold fan-shaped surface state, which we named. Here, we report another type of fan-shaped surface state generated by an IWP surrounded by a closed Weyl nodal wall (WNW). Unlike previous findings, the fan-shaped surface state discovered here exhibits inhomogeneous in spatial distribution, with significantly varying sizes of the fan blades. Moreover, this surface state can be generated by a charge-four IWP protected by the rotation symmetries {<span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>31</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>|</mo></math></span>000}, {<span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>z</mi></mrow></msub><mo>|</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>0<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>}, {<em>C</em><sub>2<em>x</em></sub>|0<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>} and the time-reversal symmetry in the space group (SG) No. 198. Importantly, our simulation results of the acoustic crystals in this SG revel that the inhomogeneous fan-shaped surface state can provide multiple channels for acoustic wave transmission without energy dissipation, demonstrating that this kind of nontrivial surface state offers an effective mechanism for designing multi-frequency acoustic wave filters and selectors.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101553"},"PeriodicalIF":10.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhomogeneous fan-shaped surface state induced by isolated Weyl points in acoustic crystals and the associated multi-frequency sound-wave filters\",\"authors\":\"Zhe-Qi Wang ,&nbsp;Xiang-Feng Yang ,&nbsp;Hua-Hua Fu\",\"doi\":\"10.1016/j.mtphys.2024.101553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nontrivial surface states excited by isolated Weyl points (IWPs) have been scarcely studied to date, primarily due to their circumvention from the Nielsen-Ninomiya no-go theorem. In a groundbreaking study on this topic [Adv. Sci., 10, 2207508 (2023)], we discovered that IWPs can generate a novel nontrivial surface state, namely the multi-fold fan-shaped surface state, which we named. Here, we report another type of fan-shaped surface state generated by an IWP surrounded by a closed Weyl nodal wall (WNW). Unlike previous findings, the fan-shaped surface state discovered here exhibits inhomogeneous in spatial distribution, with significantly varying sizes of the fan blades. Moreover, this surface state can be generated by a charge-four IWP protected by the rotation symmetries {<span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>31</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>|</mo></math></span>000}, {<span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>z</mi></mrow></msub><mo>|</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>0<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>}, {<em>C</em><sub>2<em>x</em></sub>|0<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>} and the time-reversal symmetry in the space group (SG) No. 198. Importantly, our simulation results of the acoustic crystals in this SG revel that the inhomogeneous fan-shaped surface state can provide multiple channels for acoustic wave transmission without energy dissipation, demonstrating that this kind of nontrivial surface state offers an effective mechanism for designing multi-frequency acoustic wave filters and selectors.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"48 \",\"pages\":\"Article 101553\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324002293\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002293","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,对孤立韦尔点(IWPs)激发的非难表面态的研究很少,主要原因是它们规避了尼尔森-二宫禁区定理。在对这一课题的开创性研究[Adv. Sci.,10, 2207508 (2023)]中,我们发现 IWPs 可以产生一种新的非小面态,即我们命名的多折扇形面态。在此,我们报告了由封闭的韦尔结点壁(WNW)包围的 IWP 产生的另一种扇形表面态。与之前的发现不同,这里发现的扇形表面态在空间分布上表现出不均匀性,扇叶的大小差异显著。此外,这种表面态可以由电荷四IWP产生,并受到空间群(SG)第198号中的旋转对称性{C31+|000}、{C2z|12012}、{C2x|01212}和时间反转对称性的保护。重要的是,我们对该空间群中声学晶体的模拟结果表明,不均匀的扇形表面态可以在不耗散能量的情况下为声波传输提供多个通道,这表明这种非对称表面态为设计多频声波滤波器和选择器提供了一种有效的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inhomogeneous fan-shaped surface state induced by isolated Weyl points in acoustic crystals and the associated multi-frequency sound-wave filters

Inhomogeneous fan-shaped surface state induced by isolated Weyl points in acoustic crystals and the associated multi-frequency sound-wave filters
The nontrivial surface states excited by isolated Weyl points (IWPs) have been scarcely studied to date, primarily due to their circumvention from the Nielsen-Ninomiya no-go theorem. In a groundbreaking study on this topic [Adv. Sci., 10, 2207508 (2023)], we discovered that IWPs can generate a novel nontrivial surface state, namely the multi-fold fan-shaped surface state, which we named. Here, we report another type of fan-shaped surface state generated by an IWP surrounded by a closed Weyl nodal wall (WNW). Unlike previous findings, the fan-shaped surface state discovered here exhibits inhomogeneous in spatial distribution, with significantly varying sizes of the fan blades. Moreover, this surface state can be generated by a charge-four IWP protected by the rotation symmetries {C31+|000}, {C2z|12012}, {C2x|01212} and the time-reversal symmetry in the space group (SG) No. 198. Importantly, our simulation results of the acoustic crystals in this SG revel that the inhomogeneous fan-shaped surface state can provide multiple channels for acoustic wave transmission without energy dissipation, demonstrating that this kind of nontrivial surface state offers an effective mechanism for designing multi-frequency acoustic wave filters and selectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信