{"title":"单甲基支链脂肪酸通过 FABP4/PPAR-γ 信号通路抑制 M1 型巨噬细胞极化","authors":"Yuan He, Yu Zhang, Shuang Zhu, Yuan-fa Liu, Sha Liu, Yong-jiang Xu","doi":"10.1002/mnfr.202400310","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Scope</h3>\n \n <p>Monomethyl-branched chain fatty acids (mmBCFAs) are found in a variety of food sources and are of great interest due to their potent antiinflammatory properties. However, most of the current researches have concentrated on the relationship between mmBCFAs and intestinal inflammation, and there is a large gap in the biological mechanisms involved behind their antiinflammatory effects.</p>\n </section>\n \n <section>\n \n <h3> Methods and results</h3>\n \n <p>The present study examines the role of mmBCFAs in modulating macrophage polarization. The results demonstrate that <i>iso-</i>C16:0 significantly inhibits macrophages M1 proinflammatory polarization through regulating FABP4/PPAR-γ pathway. Proteomics and molecular biology experiments verify that metabolic reprogramming is involved in the inhibition of M1 macrophage, referring to the upregulation of fatty acid oxidation, TCA cycle, and oxidative phosphorylation, as well as downregulation of glycolytic flux.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>In summary, this study offers a novel perspective on the antiinflammatory effects mediated by mmBCFAs.</p>\n </section>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 20","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monomethyl Branched-Chain Fatty Acids Suppress M1 Macrophage Polarization via FABP4/PPAR-γ Signaling Pathway\",\"authors\":\"Yuan He, Yu Zhang, Shuang Zhu, Yuan-fa Liu, Sha Liu, Yong-jiang Xu\",\"doi\":\"10.1002/mnfr.202400310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Scope</h3>\\n \\n <p>Monomethyl-branched chain fatty acids (mmBCFAs) are found in a variety of food sources and are of great interest due to their potent antiinflammatory properties. However, most of the current researches have concentrated on the relationship between mmBCFAs and intestinal inflammation, and there is a large gap in the biological mechanisms involved behind their antiinflammatory effects.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and results</h3>\\n \\n <p>The present study examines the role of mmBCFAs in modulating macrophage polarization. The results demonstrate that <i>iso-</i>C16:0 significantly inhibits macrophages M1 proinflammatory polarization through regulating FABP4/PPAR-γ pathway. Proteomics and molecular biology experiments verify that metabolic reprogramming is involved in the inhibition of M1 macrophage, referring to the upregulation of fatty acid oxidation, TCA cycle, and oxidative phosphorylation, as well as downregulation of glycolytic flux.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>In summary, this study offers a novel perspective on the antiinflammatory effects mediated by mmBCFAs.</p>\\n </section>\\n </div>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"68 20\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400310\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400310","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Monomethyl-branched chain fatty acids (mmBCFAs) are found in a variety of food sources and are of great interest due to their potent antiinflammatory properties. However, most of the current researches have concentrated on the relationship between mmBCFAs and intestinal inflammation, and there is a large gap in the biological mechanisms involved behind their antiinflammatory effects.
Methods and results
The present study examines the role of mmBCFAs in modulating macrophage polarization. The results demonstrate that iso-C16:0 significantly inhibits macrophages M1 proinflammatory polarization through regulating FABP4/PPAR-γ pathway. Proteomics and molecular biology experiments verify that metabolic reprogramming is involved in the inhibition of M1 macrophage, referring to the upregulation of fatty acid oxidation, TCA cycle, and oxidative phosphorylation, as well as downregulation of glycolytic flux.
Conclusion
In summary, this study offers a novel perspective on the antiinflammatory effects mediated by mmBCFAs.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.