选择性激光熔化镍钛心血管支架:可加工性、表面质量和机械性能

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Wei Zhang, Zhiyong. Li, Mingxia Chai, Peiyu Dong, Yali Wang
{"title":"选择性激光熔化镍钛心血管支架:可加工性、表面质量和机械性能","authors":"Wei Zhang,&nbsp;Zhiyong. Li,&nbsp;Mingxia Chai,&nbsp;Peiyu Dong,&nbsp;Yali Wang","doi":"10.1016/j.optlastec.2024.111842","DOIUrl":null,"url":null,"abstract":"<div><div>Selective laser melting (SLM) is regarded as a promising alternative technology for manufacturing customized cardiovascular stents with complex geometries. In this study, a systematic study on the printability, densification and surface roughness regarding SLM of NiTi alloy were explored. It was revealed that macro cracks were mainly formed at volume energy density (VED) of 25-86 J/mm<sup>3</sup> due to insufficient energy input with un-melted powders. However, even with the same VED, the different combinations of processing parameters exhibited unique surface characteristics. After optimization, the samples with laser power of 90 W, and scanning speed of 600 mm/s exhibit a superior relative density of 99.96 % and the minimal surface roughness <em>Sq</em> of 5.992 μm. Subsequently, The SLM capability for intricate structures was demonstrated by fabricating cardiovascular stents with varying radial thicknesses. The results indicated that the surface morphologies of SLMed stents exhibit varying degrees of powder adhesion phenomenon. However, the dimensional deviation for the radial thickness of 0.2 mm exhibits a higher percentage of 72 %, whereas the deviation reaches 104 % for that of 0.6 mm. For the compression test, the thinner radial thickness stent has better recovery ability.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective laser melting of NiTi cardiovascular stents: Processibility, surface quality and mechanical properties\",\"authors\":\"Wei Zhang,&nbsp;Zhiyong. Li,&nbsp;Mingxia Chai,&nbsp;Peiyu Dong,&nbsp;Yali Wang\",\"doi\":\"10.1016/j.optlastec.2024.111842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Selective laser melting (SLM) is regarded as a promising alternative technology for manufacturing customized cardiovascular stents with complex geometries. In this study, a systematic study on the printability, densification and surface roughness regarding SLM of NiTi alloy were explored. It was revealed that macro cracks were mainly formed at volume energy density (VED) of 25-86 J/mm<sup>3</sup> due to insufficient energy input with un-melted powders. However, even with the same VED, the different combinations of processing parameters exhibited unique surface characteristics. After optimization, the samples with laser power of 90 W, and scanning speed of 600 mm/s exhibit a superior relative density of 99.96 % and the minimal surface roughness <em>Sq</em> of 5.992 μm. Subsequently, The SLM capability for intricate structures was demonstrated by fabricating cardiovascular stents with varying radial thicknesses. The results indicated that the surface morphologies of SLMed stents exhibit varying degrees of powder adhesion phenomenon. However, the dimensional deviation for the radial thickness of 0.2 mm exhibits a higher percentage of 72 %, whereas the deviation reaches 104 % for that of 0.6 mm. For the compression test, the thinner radial thickness stent has better recovery ability.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224013008\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224013008","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

选择性激光熔融(SLM)被认为是制造具有复杂几何形状的定制心血管支架的一种前景广阔的替代技术。本研究对镍钛合金 SLM 的可印刷性、致密化和表面粗糙度进行了系统研究。研究发现,由于未熔化粉末的能量输入不足,宏观裂纹主要在体积能量密度(VED)为 25-86 J/mm3 时形成。然而,即使在相同的 VED 下,不同的加工参数组合也会表现出独特的表面特征。经过优化,激光功率为 90 W、扫描速度为 600 mm/s 的样品的相对密度高达 99.96 %,表面粗糙度 Sq 为 5.992 μm。随后,通过制造不同径向厚度的心血管支架,证明了 SLM 制造复杂结构的能力。结果表明,SLMed 支架的表面形态表现出不同程度的粉末粘附现象。不过,径向厚度为 0.2 毫米的尺寸偏差较高,为 72%,而 0.6 毫米的偏差则达到 104%。在压缩试验中,径向厚度较薄的支架具有更好的恢复能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective laser melting of NiTi cardiovascular stents: Processibility, surface quality and mechanical properties
Selective laser melting (SLM) is regarded as a promising alternative technology for manufacturing customized cardiovascular stents with complex geometries. In this study, a systematic study on the printability, densification and surface roughness regarding SLM of NiTi alloy were explored. It was revealed that macro cracks were mainly formed at volume energy density (VED) of 25-86 J/mm3 due to insufficient energy input with un-melted powders. However, even with the same VED, the different combinations of processing parameters exhibited unique surface characteristics. After optimization, the samples with laser power of 90 W, and scanning speed of 600 mm/s exhibit a superior relative density of 99.96 % and the minimal surface roughness Sq of 5.992 μm. Subsequently, The SLM capability for intricate structures was demonstrated by fabricating cardiovascular stents with varying radial thicknesses. The results indicated that the surface morphologies of SLMed stents exhibit varying degrees of powder adhesion phenomenon. However, the dimensional deviation for the radial thickness of 0.2 mm exhibits a higher percentage of 72 %, whereas the deviation reaches 104 % for that of 0.6 mm. For the compression test, the thinner radial thickness stent has better recovery ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信