MBE 生长的掺锡 Ga2O3 同外延薄膜的传输和电子结构特性

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Siliang Kuang , Zhenni Yang , Ziqi Zhang , Ziqian Sheng , Shenglong Wei , Yihong Chen , Wenjing Xu , Ye Yang , Duanyang Chen , Hongji Qi , Kelvin H.L. Zhang
{"title":"MBE 生长的掺锡 Ga2O3 同外延薄膜的传输和电子结构特性","authors":"Siliang Kuang ,&nbsp;Zhenni Yang ,&nbsp;Ziqi Zhang ,&nbsp;Ziqian Sheng ,&nbsp;Shenglong Wei ,&nbsp;Yihong Chen ,&nbsp;Wenjing Xu ,&nbsp;Ye Yang ,&nbsp;Duanyang Chen ,&nbsp;Hongji Qi ,&nbsp;Kelvin H.L. Zhang","doi":"10.1016/j.mtphys.2024.101555","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we report the transport, defect state and electronic structure properties of unintentionally doped (UID) and Sn doped <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> homo-epitaxial thin films grown by molecular beam epitaxy (MBE) with electron density ranging from 2.1 × 10<sup>16</sup> to 2.8 × 10<sup>19</sup> cm<sup>−3</sup>. The UID film with an electron density of 2.1 × 10<sup>16</sup> cm<sup>−3</sup> exhibits a notable RT mobility of 129 cm<sup>2</sup>/Vs and a peak mobility of 900 cm<sup>2</sup>/Vs at 80 K, achieving the state-of-the-art level for MBE-grown Ga<sub>2</sub>O<sub>3</sub> films. Temperature dependent Hall measurement reveal that Sn dopants have an activation energy of 56.7 meV. Synchrotron-based photoemission spectroscopy were further used to study insights into the evolution of electronic properties induced by Sn doping. An in-gap defect state was observed at the 1.5 eV above the valence band maximum for the Sn-doped Ga<sub>2</sub>O<sub>3</sub> film. The in-gap state acts as self-compensating centers affecting the overall doping efficiency and mobility. Furthermore, photoemission spectroscopic study also reveals an upward surface band bending existing at the surface region of Sn doped Ga<sub>2</sub>O<sub>3</sub> films. The identification of the in-gap state and surface upward band bending have significant implications for understanding the doping mechanisms in Ga<sub>2</sub>O<sub>3</sub> and its electronic device applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport and electronic structure properties of MBE grown Sn doped Ga2O3 homo-epitaxial films\",\"authors\":\"Siliang Kuang ,&nbsp;Zhenni Yang ,&nbsp;Ziqi Zhang ,&nbsp;Ziqian Sheng ,&nbsp;Shenglong Wei ,&nbsp;Yihong Chen ,&nbsp;Wenjing Xu ,&nbsp;Ye Yang ,&nbsp;Duanyang Chen ,&nbsp;Hongji Qi ,&nbsp;Kelvin H.L. Zhang\",\"doi\":\"10.1016/j.mtphys.2024.101555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we report the transport, defect state and electronic structure properties of unintentionally doped (UID) and Sn doped <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> homo-epitaxial thin films grown by molecular beam epitaxy (MBE) with electron density ranging from 2.1 × 10<sup>16</sup> to 2.8 × 10<sup>19</sup> cm<sup>−3</sup>. The UID film with an electron density of 2.1 × 10<sup>16</sup> cm<sup>−3</sup> exhibits a notable RT mobility of 129 cm<sup>2</sup>/Vs and a peak mobility of 900 cm<sup>2</sup>/Vs at 80 K, achieving the state-of-the-art level for MBE-grown Ga<sub>2</sub>O<sub>3</sub> films. Temperature dependent Hall measurement reveal that Sn dopants have an activation energy of 56.7 meV. Synchrotron-based photoemission spectroscopy were further used to study insights into the evolution of electronic properties induced by Sn doping. An in-gap defect state was observed at the 1.5 eV above the valence band maximum for the Sn-doped Ga<sub>2</sub>O<sub>3</sub> film. The in-gap state acts as self-compensating centers affecting the overall doping efficiency and mobility. Furthermore, photoemission spectroscopic study also reveals an upward surface band bending existing at the surface region of Sn doped Ga<sub>2</sub>O<sub>3</sub> films. The identification of the in-gap state and surface upward band bending have significant implications for understanding the doping mechanisms in Ga<sub>2</sub>O<sub>3</sub> and its electronic device applications.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324002311\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002311","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们报告了通过分子束外延(MBE)技术生长的无意掺杂(UID)和掺锡的β-Ga2O3同外延薄膜的输运、缺陷态和电子结构特性,其电子密度范围为 2.1 × 1016 至 2.8 × 1019 cm-3。电子密度为 2.1 × 1016 cm-3 的 UID 薄膜的实时迁移率高达 129 cm2/Vs,在 80 K 时的峰值迁移率为 900 cm2/Vs,达到了 MBE 生长的 Ga2O3 薄膜的最新水平。与温度相关的霍尔测量显示,锡掺杂剂的活化能为 56.7 meV。同步辐射光发射光谱被进一步用于研究掺入锡后电子特性的演变。在掺杂了锡的 Ga2O3 薄膜价带最大值上方 1.5 eV 处观察到一个内隙缺陷态。隙内缺陷态作为自补偿中心影响着整体掺杂效率和迁移率。此外,光发射光谱研究还揭示了掺杂锡的 Ga2O3 薄膜表面区域存在向上的表面带弯曲。内隙态和表面向上带弯曲的确定对于理解 Ga2O3 的掺杂机制及其电子器件应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transport and electronic structure properties of MBE grown Sn doped Ga2O3 homo-epitaxial films
In this work, we report the transport, defect state and electronic structure properties of unintentionally doped (UID) and Sn doped β-Ga2O3 homo-epitaxial thin films grown by molecular beam epitaxy (MBE) with electron density ranging from 2.1 × 1016 to 2.8 × 1019 cm−3. The UID film with an electron density of 2.1 × 1016 cm−3 exhibits a notable RT mobility of 129 cm2/Vs and a peak mobility of 900 cm2/Vs at 80 K, achieving the state-of-the-art level for MBE-grown Ga2O3 films. Temperature dependent Hall measurement reveal that Sn dopants have an activation energy of 56.7 meV. Synchrotron-based photoemission spectroscopy were further used to study insights into the evolution of electronic properties induced by Sn doping. An in-gap defect state was observed at the 1.5 eV above the valence band maximum for the Sn-doped Ga2O3 film. The in-gap state acts as self-compensating centers affecting the overall doping efficiency and mobility. Furthermore, photoemission spectroscopic study also reveals an upward surface band bending existing at the surface region of Sn doped Ga2O3 films. The identification of the in-gap state and surface upward band bending have significant implications for understanding the doping mechanisms in Ga2O3 and its electronic device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信