Miaoyu Gan , Ailing Cao , Luyun Cai , Xia Xiang , Jian Li , Qian Luan
{"title":"通过静电自组装制备纤维素基纳米颗粒,实现虾青素的 pH 值响应式输送","authors":"Miaoyu Gan , Ailing Cao , Luyun Cai , Xia Xiang , Jian Li , Qian Luan","doi":"10.1016/j.foodchem.2024.141324","DOIUrl":null,"url":null,"abstract":"<div><div>Oral administration of astaxanthin (AST), a potent antioxidant, is limited owing to its low solubility, physicochemical stability, and bioavailability. This study developed pH-responsive nanocarriers by the electrostatic self-assembly of 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO)-oxidized cellulose nanofibers (TCNFs) and chitosan (CS) to enhance the intestinal delivery of AST. The TCNF/CS@AST nanoparticles were optimized through single-factor experiments and Box–Behnken design, subsequently overcoming the hydrophobicity of AST and demonstrating improved stability against environmental stressors and controlled release in the intestinal environment. Transmission electron microscopy confirmed the near-spherical shape of these nanoparticles, with an average hydrodynamic diameter of 64 nm. TCNF/CS@AST enhanced the antioxidant effectiveness of AST after digestion and in lipopolysaccharide-stimulated RAW 264.7 cells while demonstrating good cellular compatibility. These nanoparticles present a promising strategy for the oral delivery of hydrophobic bioactive compounds orally, with potential applications in precision nutrition.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"463 ","pages":"Article 141324"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of cellulose-based nanoparticles via electrostatic self-assembly for the pH-responsive delivery of astaxanthin\",\"authors\":\"Miaoyu Gan , Ailing Cao , Luyun Cai , Xia Xiang , Jian Li , Qian Luan\",\"doi\":\"10.1016/j.foodchem.2024.141324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oral administration of astaxanthin (AST), a potent antioxidant, is limited owing to its low solubility, physicochemical stability, and bioavailability. This study developed pH-responsive nanocarriers by the electrostatic self-assembly of 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO)-oxidized cellulose nanofibers (TCNFs) and chitosan (CS) to enhance the intestinal delivery of AST. The TCNF/CS@AST nanoparticles were optimized through single-factor experiments and Box–Behnken design, subsequently overcoming the hydrophobicity of AST and demonstrating improved stability against environmental stressors and controlled release in the intestinal environment. Transmission electron microscopy confirmed the near-spherical shape of these nanoparticles, with an average hydrodynamic diameter of 64 nm. TCNF/CS@AST enhanced the antioxidant effectiveness of AST after digestion and in lipopolysaccharide-stimulated RAW 264.7 cells while demonstrating good cellular compatibility. These nanoparticles present a promising strategy for the oral delivery of hydrophobic bioactive compounds orally, with potential applications in precision nutrition.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"463 \",\"pages\":\"Article 141324\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624029741\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624029741","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Preparation of cellulose-based nanoparticles via electrostatic self-assembly for the pH-responsive delivery of astaxanthin
Oral administration of astaxanthin (AST), a potent antioxidant, is limited owing to its low solubility, physicochemical stability, and bioavailability. This study developed pH-responsive nanocarriers by the electrostatic self-assembly of 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO)-oxidized cellulose nanofibers (TCNFs) and chitosan (CS) to enhance the intestinal delivery of AST. The TCNF/CS@AST nanoparticles were optimized through single-factor experiments and Box–Behnken design, subsequently overcoming the hydrophobicity of AST and demonstrating improved stability against environmental stressors and controlled release in the intestinal environment. Transmission electron microscopy confirmed the near-spherical shape of these nanoparticles, with an average hydrodynamic diameter of 64 nm. TCNF/CS@AST enhanced the antioxidant effectiveness of AST after digestion and in lipopolysaccharide-stimulated RAW 264.7 cells while demonstrating good cellular compatibility. These nanoparticles present a promising strategy for the oral delivery of hydrophobic bioactive compounds orally, with potential applications in precision nutrition.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.