Mahmood Alizadeh Sani , Rassoul Mozafarpour , Ala Ghasemi kia , Sepideh Khorasani , Arash Dara , David Julian McClements
{"title":"作为可持续植物蛋白新兴来源的草豌豆蛋白:结构、改性、功能和应用","authors":"Mahmood Alizadeh Sani , Rassoul Mozafarpour , Ala Ghasemi kia , Sepideh Khorasani , Arash Dara , David Julian McClements","doi":"10.1016/j.fbio.2024.105092","DOIUrl":null,"url":null,"abstract":"<div><div>Grass pea is a legume crop with a protein content ranging from 20% to 30%, primarily composed of approximately 66% globulin, along with glutelin (15%), albumin (14%), and prolamin (5%). Grass pea protein (GPP) ingredients are commonly isolated using alkaline extraction and acid precipitation methods. The water solubility of GPP ingredients is approximately 60% at neutral pH. However, the resulting functional attributes of these ingredients are relatively poor, which limits their application in numerous food and beverage products. This review describes the grass pea protein as an emerging source of plant proteins including structure, modification, functionality, as well as its applications in food systems.</div><div>The functional attributes of GPP can be enhanced using various physical, chemical, and biological modification methods that alter the conformation, aggregation, or molecular weight of the proteins. Physical methods like ultrasonication, cold plasma, heat treatment, and high-pressure treatment, as well as chemical methods like protein-polysaccharide conjugation and enzymatic modification, have been used for this purpose. Modification techniques such as ultrasonication has the potential to enhance protein solubility by over 90% and also significantly improve emulsifying, foaming, and gelation properties of GPPs by more than two-fold. The properties of GPPs can be characterized using a variety of analytical methods including UV–visible spectroscopy, surface hydrophobicity, free sulfhydryl groups, Fourier transform infrared spectroscopy, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In conclusion, GPP holds great potential for application in the formulation of plant-based foods and beverages in the food industry due to its good functional and nutritional properties.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grass pea protein as an emerging source of sustainable plant proteins: Structure, modification, functionality, and applications\",\"authors\":\"Mahmood Alizadeh Sani , Rassoul Mozafarpour , Ala Ghasemi kia , Sepideh Khorasani , Arash Dara , David Julian McClements\",\"doi\":\"10.1016/j.fbio.2024.105092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grass pea is a legume crop with a protein content ranging from 20% to 30%, primarily composed of approximately 66% globulin, along with glutelin (15%), albumin (14%), and prolamin (5%). Grass pea protein (GPP) ingredients are commonly isolated using alkaline extraction and acid precipitation methods. The water solubility of GPP ingredients is approximately 60% at neutral pH. However, the resulting functional attributes of these ingredients are relatively poor, which limits their application in numerous food and beverage products. This review describes the grass pea protein as an emerging source of plant proteins including structure, modification, functionality, as well as its applications in food systems.</div><div>The functional attributes of GPP can be enhanced using various physical, chemical, and biological modification methods that alter the conformation, aggregation, or molecular weight of the proteins. Physical methods like ultrasonication, cold plasma, heat treatment, and high-pressure treatment, as well as chemical methods like protein-polysaccharide conjugation and enzymatic modification, have been used for this purpose. Modification techniques such as ultrasonication has the potential to enhance protein solubility by over 90% and also significantly improve emulsifying, foaming, and gelation properties of GPPs by more than two-fold. The properties of GPPs can be characterized using a variety of analytical methods including UV–visible spectroscopy, surface hydrophobicity, free sulfhydryl groups, Fourier transform infrared spectroscopy, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In conclusion, GPP holds great potential for application in the formulation of plant-based foods and beverages in the food industry due to its good functional and nutritional properties.</div></div>\",\"PeriodicalId\":12409,\"journal\":{\"name\":\"Food Bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Bioscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212429224015220\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioscience","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212429224015220","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Grass pea protein as an emerging source of sustainable plant proteins: Structure, modification, functionality, and applications
Grass pea is a legume crop with a protein content ranging from 20% to 30%, primarily composed of approximately 66% globulin, along with glutelin (15%), albumin (14%), and prolamin (5%). Grass pea protein (GPP) ingredients are commonly isolated using alkaline extraction and acid precipitation methods. The water solubility of GPP ingredients is approximately 60% at neutral pH. However, the resulting functional attributes of these ingredients are relatively poor, which limits their application in numerous food and beverage products. This review describes the grass pea protein as an emerging source of plant proteins including structure, modification, functionality, as well as its applications in food systems.
The functional attributes of GPP can be enhanced using various physical, chemical, and biological modification methods that alter the conformation, aggregation, or molecular weight of the proteins. Physical methods like ultrasonication, cold plasma, heat treatment, and high-pressure treatment, as well as chemical methods like protein-polysaccharide conjugation and enzymatic modification, have been used for this purpose. Modification techniques such as ultrasonication has the potential to enhance protein solubility by over 90% and also significantly improve emulsifying, foaming, and gelation properties of GPPs by more than two-fold. The properties of GPPs can be characterized using a variety of analytical methods including UV–visible spectroscopy, surface hydrophobicity, free sulfhydryl groups, Fourier transform infrared spectroscopy, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In conclusion, GPP holds great potential for application in the formulation of plant-based foods and beverages in the food industry due to its good functional and nutritional properties.
Food BioscienceBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.40
自引率
5.80%
发文量
671
审稿时长
27 days
期刊介绍:
Food Bioscience is a peer-reviewed journal that aims to provide a forum for recent developments in the field of bio-related food research. The journal focuses on both fundamental and applied research worldwide, with special attention to ethnic and cultural aspects of food bioresearch.