{"title":"利用浆果渣提取多酚化合物并将其与益生菌共同封装的价值评估","authors":"","doi":"10.1016/j.fbio.2024.105124","DOIUrl":null,"url":null,"abstract":"<div><div>Saskatoon berry pomace, an antioxidant rich byproduct, may be suitable for nutraceuticals and functional foods. The present study aimed to co-encapsulate polyphenol-rich berry extract with probiotics to utilize the polyphenolic compounds present in berry pomace. The major benefit of co-encapsulation is that polyphenolic compounds increase the survival characteristics of probiotic bacteria in gastrointestinal tract. To make the process cost-effective, a conventional solvent extraction method was used for extraction of polyphenolic compounds from berry pomace. Spray drying was used to co-encapsulate polyphenols and probiotics by using plant-based carrier materials (pea protein isolate with gum Arabic). Spray dried powder was evaluated for encapsulation efficiency, gastrointestinal stability, bio-accessibility index, along with functional, structural and thermal characteristics. Berry pomace was found to be a good source of TPC, DPPH and ABTS with 2.49 mg GAE/1 g, 4.48 mg QE/1 g and 2.96 mg QE/1 g, respectively. The encapsulation efficiency (retention of polyphenolics and bacteria in capsules) of polyphenolic compounds and probiotics was 72.6% and 94.4%, respectively. Probiotic cells encapsulated with polyphenolic compounds showed improved survival (9.08 log CFU/mL) during <em>in vitro</em> gastrointestinal digestion. The bio-accessibility of TPC was 63.6% after intestinal digestion. The spray dried powder was observed to possess good thermal stability but poor functional properties, thus limiting applications to products such as bakery goods, sports bars, cereals and other foods where dispersibility is not imperative. Therefore, co-encapsulation by spray drying method offers an efficient and cost-effective method for simultaneous delivery of bioactive compounds and probiotics to the gut, extending their benefits by this combination.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212429224015542/pdfft?md5=6333d91316f623fee5105d317b9a158f&pid=1-s2.0-S2212429224015542-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Valorization of berry pomace for extraction of polyphenol compounds and its co-encapsulation with probiotic bacteria\",\"authors\":\"\",\"doi\":\"10.1016/j.fbio.2024.105124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Saskatoon berry pomace, an antioxidant rich byproduct, may be suitable for nutraceuticals and functional foods. The present study aimed to co-encapsulate polyphenol-rich berry extract with probiotics to utilize the polyphenolic compounds present in berry pomace. The major benefit of co-encapsulation is that polyphenolic compounds increase the survival characteristics of probiotic bacteria in gastrointestinal tract. To make the process cost-effective, a conventional solvent extraction method was used for extraction of polyphenolic compounds from berry pomace. Spray drying was used to co-encapsulate polyphenols and probiotics by using plant-based carrier materials (pea protein isolate with gum Arabic). Spray dried powder was evaluated for encapsulation efficiency, gastrointestinal stability, bio-accessibility index, along with functional, structural and thermal characteristics. Berry pomace was found to be a good source of TPC, DPPH and ABTS with 2.49 mg GAE/1 g, 4.48 mg QE/1 g and 2.96 mg QE/1 g, respectively. The encapsulation efficiency (retention of polyphenolics and bacteria in capsules) of polyphenolic compounds and probiotics was 72.6% and 94.4%, respectively. Probiotic cells encapsulated with polyphenolic compounds showed improved survival (9.08 log CFU/mL) during <em>in vitro</em> gastrointestinal digestion. The bio-accessibility of TPC was 63.6% after intestinal digestion. The spray dried powder was observed to possess good thermal stability but poor functional properties, thus limiting applications to products such as bakery goods, sports bars, cereals and other foods where dispersibility is not imperative. Therefore, co-encapsulation by spray drying method offers an efficient and cost-effective method for simultaneous delivery of bioactive compounds and probiotics to the gut, extending their benefits by this combination.</div></div>\",\"PeriodicalId\":12409,\"journal\":{\"name\":\"Food Bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212429224015542/pdfft?md5=6333d91316f623fee5105d317b9a158f&pid=1-s2.0-S2212429224015542-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Bioscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212429224015542\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioscience","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212429224015542","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Valorization of berry pomace for extraction of polyphenol compounds and its co-encapsulation with probiotic bacteria
Saskatoon berry pomace, an antioxidant rich byproduct, may be suitable for nutraceuticals and functional foods. The present study aimed to co-encapsulate polyphenol-rich berry extract with probiotics to utilize the polyphenolic compounds present in berry pomace. The major benefit of co-encapsulation is that polyphenolic compounds increase the survival characteristics of probiotic bacteria in gastrointestinal tract. To make the process cost-effective, a conventional solvent extraction method was used for extraction of polyphenolic compounds from berry pomace. Spray drying was used to co-encapsulate polyphenols and probiotics by using plant-based carrier materials (pea protein isolate with gum Arabic). Spray dried powder was evaluated for encapsulation efficiency, gastrointestinal stability, bio-accessibility index, along with functional, structural and thermal characteristics. Berry pomace was found to be a good source of TPC, DPPH and ABTS with 2.49 mg GAE/1 g, 4.48 mg QE/1 g and 2.96 mg QE/1 g, respectively. The encapsulation efficiency (retention of polyphenolics and bacteria in capsules) of polyphenolic compounds and probiotics was 72.6% and 94.4%, respectively. Probiotic cells encapsulated with polyphenolic compounds showed improved survival (9.08 log CFU/mL) during in vitro gastrointestinal digestion. The bio-accessibility of TPC was 63.6% after intestinal digestion. The spray dried powder was observed to possess good thermal stability but poor functional properties, thus limiting applications to products such as bakery goods, sports bars, cereals and other foods where dispersibility is not imperative. Therefore, co-encapsulation by spray drying method offers an efficient and cost-effective method for simultaneous delivery of bioactive compounds and probiotics to the gut, extending their benefits by this combination.
Food BioscienceBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.40
自引率
5.80%
发文量
671
审稿时长
27 days
期刊介绍:
Food Bioscience is a peer-reviewed journal that aims to provide a forum for recent developments in the field of bio-related food research. The journal focuses on both fundamental and applied research worldwide, with special attention to ethnic and cultural aspects of food bioresearch.