基于神经网络的多腐蚀区域管道评估方法研究

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
{"title":"基于神经网络的多腐蚀区域管道评估方法研究","authors":"","doi":"10.1016/j.ress.2024.110507","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, significant developments have been made in methods for assessing the remaining strength of corroded pipelines. However, existing methods have limitations as they mainly focus on the local impact of corrosion defects. This study explores evaluation methods using neural networks to predict the ultimate resistance of pipelines containing multiple corrosive regions. Firstly, based on the validated method, the study generates a dataset comprising 3,000 corroded pipeline models and pixelates the corrosion information of these models via digital images. Then, three neural network evaluation frameworks are constructed: a Multilayer Perceptron (MLP) using the overall corrosion matrix, an MLP based on corrosion feature parameters, and Convolutional Neural Networks (CNN) based on corrosion images. Following this, the study analyzes the relationship between various corrosion parameters and failure pressure, compares the training effectiveness of the three neural network methods, and validates the accuracy and applicability of the proposed approach. The results indicated that various corrosion features should be considered when evaluating corroded pipelines, particularly depth. In addition, all three neural network-based methods show improved applicability and reliability compared to traditional evaluation methods, with CNN-image having the highest evaluation accuracy (correlation coefficient = 0.9564, average error = 3.46%).</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of neural network-based evaluation methods for pipelines with multiple corrosive regions\",\"authors\":\"\",\"doi\":\"10.1016/j.ress.2024.110507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, significant developments have been made in methods for assessing the remaining strength of corroded pipelines. However, existing methods have limitations as they mainly focus on the local impact of corrosion defects. This study explores evaluation methods using neural networks to predict the ultimate resistance of pipelines containing multiple corrosive regions. Firstly, based on the validated method, the study generates a dataset comprising 3,000 corroded pipeline models and pixelates the corrosion information of these models via digital images. Then, three neural network evaluation frameworks are constructed: a Multilayer Perceptron (MLP) using the overall corrosion matrix, an MLP based on corrosion feature parameters, and Convolutional Neural Networks (CNN) based on corrosion images. Following this, the study analyzes the relationship between various corrosion parameters and failure pressure, compares the training effectiveness of the three neural network methods, and validates the accuracy and applicability of the proposed approach. The results indicated that various corrosion features should be considered when evaluating corroded pipelines, particularly depth. In addition, all three neural network-based methods show improved applicability and reliability compared to traditional evaluation methods, with CNN-image having the highest evaluation accuracy (correlation coefficient = 0.9564, average error = 3.46%).</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024005799\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005799","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,腐蚀管道剩余强度评估方法取得了重大进展。然而,现有方法主要关注腐蚀缺陷的局部影响,因此存在局限性。本研究探讨了利用神经网络预测包含多个腐蚀区域的管道极限抗力的评估方法。首先,基于已验证的方法,该研究生成了一个包含 3,000 个腐蚀管道模型的数据集,并通过数字图像对这些模型的腐蚀信息进行了像素化处理。然后,构建了三个神经网络评估框架:使用整体腐蚀矩阵的多层感知器(MLP)、基于腐蚀特征参数的多层感知器(MLP)和基于腐蚀图像的卷积神经网络(CNN)。随后,研究分析了各种腐蚀参数与失效压力之间的关系,比较了三种神经网络方法的训练效果,并验证了所提方法的准确性和适用性。结果表明,在评估腐蚀管道时应考虑各种腐蚀特征,尤其是深度。此外,与传统评估方法相比,三种基于神经网络的方法都显示出更高的适用性和可靠性,其中 CNN-image 的评估准确性最高(相关系数 = 0.9564,平均误差 = 3.46%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of neural network-based evaluation methods for pipelines with multiple corrosive regions
In recent years, significant developments have been made in methods for assessing the remaining strength of corroded pipelines. However, existing methods have limitations as they mainly focus on the local impact of corrosion defects. This study explores evaluation methods using neural networks to predict the ultimate resistance of pipelines containing multiple corrosive regions. Firstly, based on the validated method, the study generates a dataset comprising 3,000 corroded pipeline models and pixelates the corrosion information of these models via digital images. Then, three neural network evaluation frameworks are constructed: a Multilayer Perceptron (MLP) using the overall corrosion matrix, an MLP based on corrosion feature parameters, and Convolutional Neural Networks (CNN) based on corrosion images. Following this, the study analyzes the relationship between various corrosion parameters and failure pressure, compares the training effectiveness of the three neural network methods, and validates the accuracy and applicability of the proposed approach. The results indicated that various corrosion features should be considered when evaluating corroded pipelines, particularly depth. In addition, all three neural network-based methods show improved applicability and reliability compared to traditional evaluation methods, with CNN-image having the highest evaluation accuracy (correlation coefficient = 0.9564, average error = 3.46%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信