Jessica L. Braden , Emily F. Klarquist , Julianne A. Kellogg
{"title":"用微波等离子体-原子发射光谱法测定谷物、假谷物和豆类中的元素","authors":"Jessica L. Braden , Emily F. Klarquist , Julianne A. Kellogg","doi":"10.1016/j.fochx.2024.101844","DOIUrl":null,"url":null,"abstract":"<div><div>A novel method for multi-element analysis in cereals, pseudocereals, and legumes was developed for principal (calcium, magnesium, potassium, and phosphorus) and trace (manganese, zinc, iron, copper, and aluminum) element determination using a microwave plasma-atomic emission spectrometer (MP-AES). The method was validated using certified reference analyte values from durum wheat (DUWF-1), corn bran (BRAN-1), quinoa (KINO-1), rice (SRM 1568b), and soy (SRM 3234). Spike recoveries were assessed using field-grown crops that represent staple and minor crops with variable matrix compositions. A closed-vessel microwave-assisted digestion method consisting of 12 mL of deionized water, 2 mL of HNO3, and 2 mL of H2O2 was efficient for the mineralization of all crops. Acceptable measurement agreement was achieved between certified and determined values for all reference materials with recovery ranges from 89 to 120 percent. Plant breeders can use the method to develop and screen crops for improved nutrient density.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101844"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590157524007326/pdfft?md5=22130b073703c59b12c70187b5f0a20a&pid=1-s2.0-S2590157524007326-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Determination of elements in cereals, pseudocereals, and legumes by microwave plasma-atomic emission spectrometry\",\"authors\":\"Jessica L. Braden , Emily F. Klarquist , Julianne A. Kellogg\",\"doi\":\"10.1016/j.fochx.2024.101844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel method for multi-element analysis in cereals, pseudocereals, and legumes was developed for principal (calcium, magnesium, potassium, and phosphorus) and trace (manganese, zinc, iron, copper, and aluminum) element determination using a microwave plasma-atomic emission spectrometer (MP-AES). The method was validated using certified reference analyte values from durum wheat (DUWF-1), corn bran (BRAN-1), quinoa (KINO-1), rice (SRM 1568b), and soy (SRM 3234). Spike recoveries were assessed using field-grown crops that represent staple and minor crops with variable matrix compositions. A closed-vessel microwave-assisted digestion method consisting of 12 mL of deionized water, 2 mL of HNO3, and 2 mL of H2O2 was efficient for the mineralization of all crops. Acceptable measurement agreement was achieved between certified and determined values for all reference materials with recovery ranges from 89 to 120 percent. Plant breeders can use the method to develop and screen crops for improved nutrient density.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101844\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007326/pdfft?md5=22130b073703c59b12c70187b5f0a20a&pid=1-s2.0-S2590157524007326-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007326\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007326","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Determination of elements in cereals, pseudocereals, and legumes by microwave plasma-atomic emission spectrometry
A novel method for multi-element analysis in cereals, pseudocereals, and legumes was developed for principal (calcium, magnesium, potassium, and phosphorus) and trace (manganese, zinc, iron, copper, and aluminum) element determination using a microwave plasma-atomic emission spectrometer (MP-AES). The method was validated using certified reference analyte values from durum wheat (DUWF-1), corn bran (BRAN-1), quinoa (KINO-1), rice (SRM 1568b), and soy (SRM 3234). Spike recoveries were assessed using field-grown crops that represent staple and minor crops with variable matrix compositions. A closed-vessel microwave-assisted digestion method consisting of 12 mL of deionized water, 2 mL of HNO3, and 2 mL of H2O2 was efficient for the mineralization of all crops. Acceptable measurement agreement was achieved between certified and determined values for all reference materials with recovery ranges from 89 to 120 percent. Plant breeders can use the method to develop and screen crops for improved nutrient density.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.