基于在线毛细管电泳的固定化酶微反应器和分子对接技术从养心氏片中筛选凝血酶抑制剂

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Wenping Liu, Rui Zhou, Jiake Wen, Jin Li, Kunze Du, Jun He, Yaqi Yao, Yanxu Chang
{"title":"基于在线毛细管电泳的固定化酶微反应器和分子对接技术从养心氏片中筛选凝血酶抑制剂","authors":"Wenping Liu, Rui Zhou, Jiake Wen, Jin Li, Kunze Du, Jun He, Yaqi Yao, Yanxu Chang","doi":"10.1002/pca.3447","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Yangxinshi tablet (YXST) is a effective traditional Chinese medicine in treating cardiovascular diseases such as heart failure and myocardial infarction.</p><p><strong>Objectives: </strong>This study aims to develop a method for screening thrombin inhibitors from YXST using an online immobilized enzyme microreactor (IMER) based on capillary electrophoresis (CE).</p><p><strong>Materials and methods: </strong>Thrombin (THR) was immobilized on the capillary's inner wall using polydopamine (PDA). The chromogenic substrate S-2238 was employed to assess thrombin (THR) activity and kinetic parameters. The stability and repeatability of the constructed thrombin-immobilized enzyme microreactor (THR-IMER) were evaluated over 40 runs, maintaining 85% of initial activity. The Michaelis-Menten constant (K<sub>m</sub>) for THR was determined to be 11.98 mM. The half-maximal inhibitory concentration (IC<sub>50</sub>) and inhibition constant (K<sub>i</sub>) for argatroban on THR were calculated. Ten compounds in YXST were screened for THR inhibitory potency using the THR-IMER.</p><p><strong>Results: </strong>Salvianolic acid B and caffeic acid were identified as potential THR inhibitors in YXST, with inhibition rates at 200 μg/mL of 55.06 ± 6.70% and 31.88 ± 4.79%, respectively, aligning with microplate reader assay results. Molecular docking analysis confirmed their interactions with key THR residues, verifying their inhibitory activity.</p><p><strong>Conclusion: </strong>The CE-based THR-IMER method was successfully developed for screening thrombin inhibitors from YXST, offering a reliable approach for identifying potential therapeutic compounds.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening thrombin inhibitors from Yangxinshi tablets by online capillary electrophoresis-based immobilized enzyme microreactor and molecular docking.\",\"authors\":\"Wenping Liu, Rui Zhou, Jiake Wen, Jin Li, Kunze Du, Jun He, Yaqi Yao, Yanxu Chang\",\"doi\":\"10.1002/pca.3447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Yangxinshi tablet (YXST) is a effective traditional Chinese medicine in treating cardiovascular diseases such as heart failure and myocardial infarction.</p><p><strong>Objectives: </strong>This study aims to develop a method for screening thrombin inhibitors from YXST using an online immobilized enzyme microreactor (IMER) based on capillary electrophoresis (CE).</p><p><strong>Materials and methods: </strong>Thrombin (THR) was immobilized on the capillary's inner wall using polydopamine (PDA). The chromogenic substrate S-2238 was employed to assess thrombin (THR) activity and kinetic parameters. The stability and repeatability of the constructed thrombin-immobilized enzyme microreactor (THR-IMER) were evaluated over 40 runs, maintaining 85% of initial activity. The Michaelis-Menten constant (K<sub>m</sub>) for THR was determined to be 11.98 mM. The half-maximal inhibitory concentration (IC<sub>50</sub>) and inhibition constant (K<sub>i</sub>) for argatroban on THR were calculated. Ten compounds in YXST were screened for THR inhibitory potency using the THR-IMER.</p><p><strong>Results: </strong>Salvianolic acid B and caffeic acid were identified as potential THR inhibitors in YXST, with inhibition rates at 200 μg/mL of 55.06 ± 6.70% and 31.88 ± 4.79%, respectively, aligning with microplate reader assay results. Molecular docking analysis confirmed their interactions with key THR residues, verifying their inhibitory activity.</p><p><strong>Conclusion: </strong>The CE-based THR-IMER method was successfully developed for screening thrombin inhibitors from YXST, offering a reliable approach for identifying potential therapeutic compounds.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3447\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3447","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

简介养心氏片(YXST)是治疗心力衰竭和心肌梗死等心血管疾病的有效中药:本研究旨在开发一种基于毛细管电泳(CE)的在线固定化酶微反应器(IMER)筛选养心氏片凝血酶抑制剂的方法:凝血酶(THR)用聚多巴胺(PDA)固定在毛细管内壁上。使用显色底物 S-2238 评估凝血酶(THR)的活性和动力学参数。在保持 85% 初始活性的情况下,对所构建的凝血酶固定化酶微反应器(THR-IMER)进行了 40 次运行,评估了其稳定性和可重复性。确定 THR 的迈克尔斯-门顿常数(Km)为 11.98 mM。计算了阿加曲班对 THR 的半最大抑制浓度(IC50)和抑制常数(Ki)。利用 THR-IMER 筛选了 YXST 中的 10 种化合物对 THR 的抑制效力:结果:丹酚酸 B 和咖啡酸被鉴定为 YXST 中潜在的 THR 抑制剂,在 200 μg/mL 浓度下的抑制率分别为 55.06 ± 6.70% 和 31.88 ± 4.79%,与微孔板阅读器检测结果一致。分子对接分析证实了它们与关键 THR 残基的相互作用,验证了它们的抑制活性:结论:基于 CE 的 THR-IMER 方法成功用于筛选 YXST 凝血酶抑制剂,为鉴定潜在的治疗化合物提供了一种可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening thrombin inhibitors from Yangxinshi tablets by online capillary electrophoresis-based immobilized enzyme microreactor and molecular docking.

Introduction: Yangxinshi tablet (YXST) is a effective traditional Chinese medicine in treating cardiovascular diseases such as heart failure and myocardial infarction.

Objectives: This study aims to develop a method for screening thrombin inhibitors from YXST using an online immobilized enzyme microreactor (IMER) based on capillary electrophoresis (CE).

Materials and methods: Thrombin (THR) was immobilized on the capillary's inner wall using polydopamine (PDA). The chromogenic substrate S-2238 was employed to assess thrombin (THR) activity and kinetic parameters. The stability and repeatability of the constructed thrombin-immobilized enzyme microreactor (THR-IMER) were evaluated over 40 runs, maintaining 85% of initial activity. The Michaelis-Menten constant (Km) for THR was determined to be 11.98 mM. The half-maximal inhibitory concentration (IC50) and inhibition constant (Ki) for argatroban on THR were calculated. Ten compounds in YXST were screened for THR inhibitory potency using the THR-IMER.

Results: Salvianolic acid B and caffeic acid were identified as potential THR inhibitors in YXST, with inhibition rates at 200 μg/mL of 55.06 ± 6.70% and 31.88 ± 4.79%, respectively, aligning with microplate reader assay results. Molecular docking analysis confirmed their interactions with key THR residues, verifying their inhibitory activity.

Conclusion: The CE-based THR-IMER method was successfully developed for screening thrombin inhibitors from YXST, offering a reliable approach for identifying potential therapeutic compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytochemical Analysis
Phytochemical Analysis 生物-分析化学
CiteScore
6.00
自引率
6.10%
发文量
88
审稿时长
1.7 months
期刊介绍: Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信