基于人工智能的可卡因自控狨猴行为和大脑图像分析。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wonmi Gu , Juhui Gim , Dohyun Lee , Heejong Eom , Jae Jun Lee , Seong Shoon Yoon , Tae-Young Heo , Jaesuk Yun
{"title":"基于人工智能的可卡因自控狨猴行为和大脑图像分析。","authors":"Wonmi Gu ,&nbsp;Juhui Gim ,&nbsp;Dohyun Lee ,&nbsp;Heejong Eom ,&nbsp;Jae Jun Lee ,&nbsp;Seong Shoon Yoon ,&nbsp;Tae-Young Heo ,&nbsp;Jaesuk Yun","doi":"10.1016/j.jneumeth.2024.110294","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The sophisticated behavioral and cognitive repertoires of non-human primates (NHPs) make them suitable subjects for studies involving cocaine self-administration (SA) schedules. However, ethical considerations, adherence to the 3Rs principle (replacement, reduction and refinement), and other factors make it challenging to obtain NHPs individuals for research. Consequently, there is a need for methods that can comprehensively analyze small datasets using artificial intelligence (AI).</div></div><div><h3>New methods</h3><div>We employed AI to identify cocaine dependence patterns from collected data. First, we collected behavioral data from cocaine SA marmosets (<em>Callithrix jacchus</em>) to develop a dependence prediction model. SHapley Additive exPlanations (SHAP) values were used to demonstrate the importance of various variables. Additionally, we collected positron emission tomographic (PET) images showing dopamine transporter (DAT) binding potential and developed an algorithm for PET image segmentation.</div></div><div><h3>Results</h3><div>The prediction model indicated that the Random Forest (RF) algorithm performed best, with an area under the curve (AUC) of 0.92. The top five variables influencing the model were identified using SHAP values. The PET image segmentation model achieved an accuracy of 0.97, a mean squared error of 0.02, an intersection over union (IoU) of 0.845, and a Dice coefficient of 0.913.</div></div><div><h3>Comparison with existing methods and conclusion</h3><div>Utilizing data from the marmoset SA experiment, we developed an ML-based dependence prediction model and analyzed variable importance rankings using SHAP. AI-based imaging segmentation methods offer a valuable tool for evaluating DAT availability in NHPs following chronic cocaine administration.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based analysis of behavior and brain images in cocaine-self-administered marmosets\",\"authors\":\"Wonmi Gu ,&nbsp;Juhui Gim ,&nbsp;Dohyun Lee ,&nbsp;Heejong Eom ,&nbsp;Jae Jun Lee ,&nbsp;Seong Shoon Yoon ,&nbsp;Tae-Young Heo ,&nbsp;Jaesuk Yun\",\"doi\":\"10.1016/j.jneumeth.2024.110294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The sophisticated behavioral and cognitive repertoires of non-human primates (NHPs) make them suitable subjects for studies involving cocaine self-administration (SA) schedules. However, ethical considerations, adherence to the 3Rs principle (replacement, reduction and refinement), and other factors make it challenging to obtain NHPs individuals for research. Consequently, there is a need for methods that can comprehensively analyze small datasets using artificial intelligence (AI).</div></div><div><h3>New methods</h3><div>We employed AI to identify cocaine dependence patterns from collected data. First, we collected behavioral data from cocaine SA marmosets (<em>Callithrix jacchus</em>) to develop a dependence prediction model. SHapley Additive exPlanations (SHAP) values were used to demonstrate the importance of various variables. Additionally, we collected positron emission tomographic (PET) images showing dopamine transporter (DAT) binding potential and developed an algorithm for PET image segmentation.</div></div><div><h3>Results</h3><div>The prediction model indicated that the Random Forest (RF) algorithm performed best, with an area under the curve (AUC) of 0.92. The top five variables influencing the model were identified using SHAP values. The PET image segmentation model achieved an accuracy of 0.97, a mean squared error of 0.02, an intersection over union (IoU) of 0.845, and a Dice coefficient of 0.913.</div></div><div><h3>Comparison with existing methods and conclusion</h3><div>Utilizing data from the marmoset SA experiment, we developed an ML-based dependence prediction model and analyzed variable importance rankings using SHAP. AI-based imaging segmentation methods offer a valuable tool for evaluating DAT availability in NHPs following chronic cocaine administration.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景:非人灵长类动物(NHPs)具有复杂的行为和认知能力,适合作为可卡因自我给药(SA)计划的研究对象。然而,由于伦理方面的考虑、对 3R 原则(替代、减少和完善)的遵守以及其他因素,要获得用于研究的非人灵长类个体具有挑战性。因此,我们需要能利用人工智能(AI)全面分析小型数据集的方法:我们利用人工智能从收集到的数据中识别可卡因依赖模式。首先,我们收集了可卡因SA狨猴(Callithrix jacchus)的行为数据,以开发依赖性预测模型。使用SHAPLE Additive exPlanations(SHAP)值来证明各种变量的重要性。此外,我们还收集了显示多巴胺转运体(DAT)结合电位的正电子发射断层扫描(PET)图像,并开发了PET图像分割算法:预测模型显示,随机森林(RF)算法表现最佳,曲线下面积(AUC)为 0.92。利用 SHAP 值确定了影响模型的前五个变量。PET 图像分割模型的准确率为 0.97,平均平方误差为 0.02,交集大于联合(IoU)为 0.845,Dice 系数为 0.913:利用狨猴 SA 实验的数据,我们开发了一个基于 ML 的依赖性预测模型,并利用 SHAP 分析了变量重要性排名。基于人工智能的成像分割方法为评估慢性可卡因给药后NHPs的DAT可用性提供了一种有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-based analysis of behavior and brain images in cocaine-self-administered marmosets

Background

The sophisticated behavioral and cognitive repertoires of non-human primates (NHPs) make them suitable subjects for studies involving cocaine self-administration (SA) schedules. However, ethical considerations, adherence to the 3Rs principle (replacement, reduction and refinement), and other factors make it challenging to obtain NHPs individuals for research. Consequently, there is a need for methods that can comprehensively analyze small datasets using artificial intelligence (AI).

New methods

We employed AI to identify cocaine dependence patterns from collected data. First, we collected behavioral data from cocaine SA marmosets (Callithrix jacchus) to develop a dependence prediction model. SHapley Additive exPlanations (SHAP) values were used to demonstrate the importance of various variables. Additionally, we collected positron emission tomographic (PET) images showing dopamine transporter (DAT) binding potential and developed an algorithm for PET image segmentation.

Results

The prediction model indicated that the Random Forest (RF) algorithm performed best, with an area under the curve (AUC) of 0.92. The top five variables influencing the model were identified using SHAP values. The PET image segmentation model achieved an accuracy of 0.97, a mean squared error of 0.02, an intersection over union (IoU) of 0.845, and a Dice coefficient of 0.913.

Comparison with existing methods and conclusion

Utilizing data from the marmoset SA experiment, we developed an ML-based dependence prediction model and analyzed variable importance rankings using SHAP. AI-based imaging segmentation methods offer a valuable tool for evaluating DAT availability in NHPs following chronic cocaine administration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信