{"title":"Nobiletin是丙酮酸激酶同工酶M1/M2蛋白的激活剂,它能上调糖酵解信号通路,缓解斑马鱼夜间因人工光照而产生的类似抑郁的行为。","authors":"Meng-Ling Zhang, Xiao-Peng Li, Li-Fang Gao, Jian Liu, Zi-Jun Bi, Yu-Han Miao, Yang Shan, Huan-Ling Yu","doi":"10.1016/j.foodchem.2024.141328","DOIUrl":null,"url":null,"abstract":"<p><p>We established a zebrafish model of depression-like behaviour induced by exposure to artificial light at night (ALAN) and found that nobiletin (NOB) alleviated depression-like behaviour. Subsequently, based on the results of a 24-h free movement assay, clock gene expression and brain tissue transcriptome sequencing, the glycolysis signalling pathway was identified as a potential target through which NOB exerted antidepressant effects. Using the ALAN zebrafish model, we found that supplementation with exogenous L-lactic acid alleviated depressive-like behaviour. Molecular docking and molecular dynamics simulations revealed an inter-molecular interaction between NOB and the pyruvate kinase isozyme M1/M2 (PKM2) protein. We then used compound 3 k to construct a zebrafish model in which PKM2 was inhibited. Our analysis of this model suggested that NOB alleviated depression-like behaviour via inhibition of PKM2. In summary, NOB alleviated depressive-like behaviour induced by ALAN in zebrafish via targeting of PKM2 and activation of the glycolytic signalling pathway.</p>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nobiletin, an activator of the pyruvate kinase isozyme M1/M2 protein, upregulated the glycolytic signalling pathway and alleviated depressive-like behaviour caused by artificial light exposure at night in zebrafish.\",\"authors\":\"Meng-Ling Zhang, Xiao-Peng Li, Li-Fang Gao, Jian Liu, Zi-Jun Bi, Yu-Han Miao, Yang Shan, Huan-Ling Yu\",\"doi\":\"10.1016/j.foodchem.2024.141328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We established a zebrafish model of depression-like behaviour induced by exposure to artificial light at night (ALAN) and found that nobiletin (NOB) alleviated depression-like behaviour. Subsequently, based on the results of a 24-h free movement assay, clock gene expression and brain tissue transcriptome sequencing, the glycolysis signalling pathway was identified as a potential target through which NOB exerted antidepressant effects. Using the ALAN zebrafish model, we found that supplementation with exogenous L-lactic acid alleviated depressive-like behaviour. Molecular docking and molecular dynamics simulations revealed an inter-molecular interaction between NOB and the pyruvate kinase isozyme M1/M2 (PKM2) protein. We then used compound 3 k to construct a zebrafish model in which PKM2 was inhibited. Our analysis of this model suggested that NOB alleviated depression-like behaviour via inhibition of PKM2. In summary, NOB alleviated depressive-like behaviour induced by ALAN in zebrafish via targeting of PKM2 and activation of the glycolytic signalling pathway.</p>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.141328\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.141328","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们建立了一个斑马鱼模型,通过夜间暴露于人造光(ALAN)诱导抑郁样行为,并发现金霉素(NOB)能缓解抑郁样行为。随后,根据24小时自由活动试验、时钟基因表达和脑组织转录组测序的结果,确定糖酵解信号通路是NOB发挥抗抑郁作用的潜在靶点。利用 ALAN 斑马鱼模型,我们发现补充外源 L-乳酸可减轻抑郁样行为。分子对接和分子动力学模拟揭示了 NOB 与丙酮酸激酶同工酶 M1/M2(PKM2)蛋白之间的分子间相互作用。然后,我们用化合物 3 k 构建了一个斑马鱼模型,在该模型中,PKM2 受到抑制。我们对该模型的分析表明,NOB 可通过抑制 PKM2 来缓解抑郁样行为。总之,NOB 通过靶向 PKM2 和激活糖酵解信号通路,减轻了 ALAN 诱导的斑马鱼抑郁样行为。
Nobiletin, an activator of the pyruvate kinase isozyme M1/M2 protein, upregulated the glycolytic signalling pathway and alleviated depressive-like behaviour caused by artificial light exposure at night in zebrafish.
We established a zebrafish model of depression-like behaviour induced by exposure to artificial light at night (ALAN) and found that nobiletin (NOB) alleviated depression-like behaviour. Subsequently, based on the results of a 24-h free movement assay, clock gene expression and brain tissue transcriptome sequencing, the glycolysis signalling pathway was identified as a potential target through which NOB exerted antidepressant effects. Using the ALAN zebrafish model, we found that supplementation with exogenous L-lactic acid alleviated depressive-like behaviour. Molecular docking and molecular dynamics simulations revealed an inter-molecular interaction between NOB and the pyruvate kinase isozyme M1/M2 (PKM2) protein. We then used compound 3 k to construct a zebrafish model in which PKM2 was inhibited. Our analysis of this model suggested that NOB alleviated depression-like behaviour via inhibition of PKM2. In summary, NOB alleviated depressive-like behaviour induced by ALAN in zebrafish via targeting of PKM2 and activation of the glycolytic signalling pathway.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.