Emily P Thi, Xin Ye, Nicholas M Snead, Amy C H Lee, Holly M Micolochick Steuer, Andrzej Ardzinski, Ingrid E Graves, Christine Espiritu, Andrea Cuconati, Cory Abbott, Agnes Jarosz, Xiaowei Teng, Bhavna Paratala, Kevin McClintock, Troy Harasym, Rene Rijnbrand, Angela M Lam, Michael J Sofia
{"title":"用小干扰 RNA 治疗药物 Imdusiran 控制乙型肝炎病毒","authors":"Emily P Thi, Xin Ye, Nicholas M Snead, Amy C H Lee, Holly M Micolochick Steuer, Andrzej Ardzinski, Ingrid E Graves, Christine Espiritu, Andrea Cuconati, Cory Abbott, Agnes Jarosz, Xiaowei Teng, Bhavna Paratala, Kevin McClintock, Troy Harasym, Rene Rijnbrand, Angela M Lam, Michael J Sofia","doi":"10.1021/acsinfecdis.4c00514","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic hepatitis B is a global health concern with a high risk of end-stage liver disease. Current standard-of-care agents have low cure rates, and new therapies are needed. Small interfering RNAs (siRNAs) that target viral RNAs fulfill a gap not addressed by standard-of-care agents and may contribute to a functional cure. Here, we describe the preclinical characterization of imdusiran (AB-729), a novel, pan-genotypic siRNA therapeutic that effectively reduces HBsAg, viral antigens, and viral replication in chronic hepatitis B patients and is currently in Phase 2 clinical studies. In hepatitis B virus (HBV) cell-based systems, imdusiran possessed pan-genotypic nanomolar potency and retained activity against HBV target site polymorphisms. Imdusiran was active against nucleos(t)ide analogue- and capsid assembly modulator-resistant HBV isolates, and combination with standard-of-care agents was additive. In an HBV adeno-associated virus mouse model, HBsAg was reduced up to 3.7 log<sub>10</sub> after a single imdusiran dose, with sustained suppression for 10 weeks. Imdusiran did not intrinsically stimulate cytokine release in healthy donor human whole blood, supportive of its mechanism of action as a direct acting RNA interference antiviral. Taken together, these data support imdusiran in combination treatment approaches toward chronic hepatitis B functional cure.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"3640-3649"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of Hepatitis B Virus with Imdusiran, a Small Interfering RNA Therapeutic.\",\"authors\":\"Emily P Thi, Xin Ye, Nicholas M Snead, Amy C H Lee, Holly M Micolochick Steuer, Andrzej Ardzinski, Ingrid E Graves, Christine Espiritu, Andrea Cuconati, Cory Abbott, Agnes Jarosz, Xiaowei Teng, Bhavna Paratala, Kevin McClintock, Troy Harasym, Rene Rijnbrand, Angela M Lam, Michael J Sofia\",\"doi\":\"10.1021/acsinfecdis.4c00514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic hepatitis B is a global health concern with a high risk of end-stage liver disease. Current standard-of-care agents have low cure rates, and new therapies are needed. Small interfering RNAs (siRNAs) that target viral RNAs fulfill a gap not addressed by standard-of-care agents and may contribute to a functional cure. Here, we describe the preclinical characterization of imdusiran (AB-729), a novel, pan-genotypic siRNA therapeutic that effectively reduces HBsAg, viral antigens, and viral replication in chronic hepatitis B patients and is currently in Phase 2 clinical studies. In hepatitis B virus (HBV) cell-based systems, imdusiran possessed pan-genotypic nanomolar potency and retained activity against HBV target site polymorphisms. Imdusiran was active against nucleos(t)ide analogue- and capsid assembly modulator-resistant HBV isolates, and combination with standard-of-care agents was additive. In an HBV adeno-associated virus mouse model, HBsAg was reduced up to 3.7 log<sub>10</sub> after a single imdusiran dose, with sustained suppression for 10 weeks. Imdusiran did not intrinsically stimulate cytokine release in healthy donor human whole blood, supportive of its mechanism of action as a direct acting RNA interference antiviral. Taken together, these data support imdusiran in combination treatment approaches toward chronic hepatitis B functional cure.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"3640-3649\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00514\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00514","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Control of Hepatitis B Virus with Imdusiran, a Small Interfering RNA Therapeutic.
Chronic hepatitis B is a global health concern with a high risk of end-stage liver disease. Current standard-of-care agents have low cure rates, and new therapies are needed. Small interfering RNAs (siRNAs) that target viral RNAs fulfill a gap not addressed by standard-of-care agents and may contribute to a functional cure. Here, we describe the preclinical characterization of imdusiran (AB-729), a novel, pan-genotypic siRNA therapeutic that effectively reduces HBsAg, viral antigens, and viral replication in chronic hepatitis B patients and is currently in Phase 2 clinical studies. In hepatitis B virus (HBV) cell-based systems, imdusiran possessed pan-genotypic nanomolar potency and retained activity against HBV target site polymorphisms. Imdusiran was active against nucleos(t)ide analogue- and capsid assembly modulator-resistant HBV isolates, and combination with standard-of-care agents was additive. In an HBV adeno-associated virus mouse model, HBsAg was reduced up to 3.7 log10 after a single imdusiran dose, with sustained suppression for 10 weeks. Imdusiran did not intrinsically stimulate cytokine release in healthy donor human whole blood, supportive of its mechanism of action as a direct acting RNA interference antiviral. Taken together, these data support imdusiran in combination treatment approaches toward chronic hepatitis B functional cure.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.