Tahmina Tabassum Treena, Nasir Muhammad Munim, Mohammad Rakibul Islam, Md. Omar Faruque
{"title":"生物医学和工业气体检测应用中折射率传感椭圆形腔体的比较分析","authors":"Tahmina Tabassum Treena, Nasir Muhammad Munim, Mohammad Rakibul Islam, Md. Omar Faruque","doi":"10.1016/j.optlastec.2024.111805","DOIUrl":null,"url":null,"abstract":"<div><p>This work compares two ultra-high sensitive refractive index (RI) sensors based on metal–insulator-metal (MIM) waveguides coupled with an elliptical cavity for label-free, low-cost, and fast gas sensing for biomedical and industrial applications. The first sensor can be called a Side-Coupled Elliptical Cavity (SCEC), and the second sensor can be called a novel Ring Encapsulated Elliptical Cavity (REEC), which has an elliptical cavity inside an elliptical ring with a small gap. The transmission spectra of both sensors are investigated by finite element method (FEM) simulations. By optimizing the structural parameters and enhancing the light-matter interaction, the REEC sensor exhibits a maximum sensitivity (S) of 7078.12 nm/RIU and a figure of merit (FOM) of 16.3 RIU<sup>−1</sup>, which are 91.06 % and 46.94 % higher than the SCEC sensor, respectively. The sensors are tested with dielectric materials of different RIs from 1 to 1.02. Notably, both sensors exhibit nearly identical resonant wavelengths. To evaluate efficiency, we introduce a new parameter: sensitivity per resonant wavelength (S/RW). A higher S/RW indicates superior sensitivity at a lower resonant wavelength, desirable for compact and cost-effective devices. The REEC sensor outperforms existing plasmonic MIM waveguide-based sensors in terms of S/RW. Furthermore, owing to its exceptional accuracy, the REEC sensor can detect gases such as helium, carbon dioxide, gaseous methanol, and gaseous ethanol. This makes it a promising candidate for diverse biomedical and industrial applications, raising exciting possibilities for real-world implementation.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111805"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of elliptical cavities for refractive index sensing for biomedical and industrial gas detection applications\",\"authors\":\"Tahmina Tabassum Treena, Nasir Muhammad Munim, Mohammad Rakibul Islam, Md. Omar Faruque\",\"doi\":\"10.1016/j.optlastec.2024.111805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work compares two ultra-high sensitive refractive index (RI) sensors based on metal–insulator-metal (MIM) waveguides coupled with an elliptical cavity for label-free, low-cost, and fast gas sensing for biomedical and industrial applications. The first sensor can be called a Side-Coupled Elliptical Cavity (SCEC), and the second sensor can be called a novel Ring Encapsulated Elliptical Cavity (REEC), which has an elliptical cavity inside an elliptical ring with a small gap. The transmission spectra of both sensors are investigated by finite element method (FEM) simulations. By optimizing the structural parameters and enhancing the light-matter interaction, the REEC sensor exhibits a maximum sensitivity (S) of 7078.12 nm/RIU and a figure of merit (FOM) of 16.3 RIU<sup>−1</sup>, which are 91.06 % and 46.94 % higher than the SCEC sensor, respectively. The sensors are tested with dielectric materials of different RIs from 1 to 1.02. Notably, both sensors exhibit nearly identical resonant wavelengths. To evaluate efficiency, we introduce a new parameter: sensitivity per resonant wavelength (S/RW). A higher S/RW indicates superior sensitivity at a lower resonant wavelength, desirable for compact and cost-effective devices. The REEC sensor outperforms existing plasmonic MIM waveguide-based sensors in terms of S/RW. Furthermore, owing to its exceptional accuracy, the REEC sensor can detect gases such as helium, carbon dioxide, gaseous methanol, and gaseous ethanol. This makes it a promising candidate for diverse biomedical and industrial applications, raising exciting possibilities for real-world implementation.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"181 \",\"pages\":\"Article 111805\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012635\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012635","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Comparative analysis of elliptical cavities for refractive index sensing for biomedical and industrial gas detection applications
This work compares two ultra-high sensitive refractive index (RI) sensors based on metal–insulator-metal (MIM) waveguides coupled with an elliptical cavity for label-free, low-cost, and fast gas sensing for biomedical and industrial applications. The first sensor can be called a Side-Coupled Elliptical Cavity (SCEC), and the second sensor can be called a novel Ring Encapsulated Elliptical Cavity (REEC), which has an elliptical cavity inside an elliptical ring with a small gap. The transmission spectra of both sensors are investigated by finite element method (FEM) simulations. By optimizing the structural parameters and enhancing the light-matter interaction, the REEC sensor exhibits a maximum sensitivity (S) of 7078.12 nm/RIU and a figure of merit (FOM) of 16.3 RIU−1, which are 91.06 % and 46.94 % higher than the SCEC sensor, respectively. The sensors are tested with dielectric materials of different RIs from 1 to 1.02. Notably, both sensors exhibit nearly identical resonant wavelengths. To evaluate efficiency, we introduce a new parameter: sensitivity per resonant wavelength (S/RW). A higher S/RW indicates superior sensitivity at a lower resonant wavelength, desirable for compact and cost-effective devices. The REEC sensor outperforms existing plasmonic MIM waveguide-based sensors in terms of S/RW. Furthermore, owing to its exceptional accuracy, the REEC sensor can detect gases such as helium, carbon dioxide, gaseous methanol, and gaseous ethanol. This makes it a promising candidate for diverse biomedical and industrial applications, raising exciting possibilities for real-world implementation.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems