Ying Sun , Mantong Zhao , Zhongyuan Liu , Haohao Shi , Xueying Zhang , Yongqiang Zhao , Zhenhua Ma , Gang Yu , Guanghua Xia , Xuanri Shen
{"title":"对鱼油高内相皮克林乳剂具有稳定作用的乳铁蛋白-多酚共轭物的制备与表征","authors":"Ying Sun , Mantong Zhao , Zhongyuan Liu , Haohao Shi , Xueying Zhang , Yongqiang Zhao , Zhenhua Ma , Gang Yu , Guanghua Xia , Xuanri Shen","doi":"10.1016/j.fochx.2024.101836","DOIUrl":null,"url":null,"abstract":"<div><p>The combination of protein and polyphenol is an effective approach to improve the stability of protein emulsions. The lactoferrin (LF)-(−)-epigallocatechin-3-gallate (EGCG) covalent complex (LF-EGCG) was first prepared by alkali-induced reaction, then the structure and physicochemical properties between LF-EGCG and non-covalent complex (LF + EGCG) were compared, and finally the stability of complexes to fish oil high internal Pickering emulsions (HIPPEs) was tested. Results showed that LF-EGCG had stronger antioxidant activity, higher thermal stability, and better surface wettability than LF + EGCG. Meanwhile, the complexes showed no cytotoxicity within the tested concentration range (12.5–200 μg/mL). The HIPPEs stabilized with LF-EGCG possessed smaller droplet size, higher ζ-potential, and more uniform oil/water proton distribution. Covalent treatment also enhanced the storage, thermal, freeze-thaw and physical stability of LF HIPPEs. Furthermore, due to the higher antioxidant activity and denser microstructure, LF-EGCG HIPPE can more effectively inhibit the oxidation of fish oil.</p></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101836"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590157524007247/pdfft?md5=3be950c652bf273793b25bc76b61c3f6&pid=1-s2.0-S2590157524007247-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of lactoferrin-polyphenol conjugate with stabilizing effects on fish oil high internal phase Pickering emulsions\",\"authors\":\"Ying Sun , Mantong Zhao , Zhongyuan Liu , Haohao Shi , Xueying Zhang , Yongqiang Zhao , Zhenhua Ma , Gang Yu , Guanghua Xia , Xuanri Shen\",\"doi\":\"10.1016/j.fochx.2024.101836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The combination of protein and polyphenol is an effective approach to improve the stability of protein emulsions. The lactoferrin (LF)-(−)-epigallocatechin-3-gallate (EGCG) covalent complex (LF-EGCG) was first prepared by alkali-induced reaction, then the structure and physicochemical properties between LF-EGCG and non-covalent complex (LF + EGCG) were compared, and finally the stability of complexes to fish oil high internal Pickering emulsions (HIPPEs) was tested. Results showed that LF-EGCG had stronger antioxidant activity, higher thermal stability, and better surface wettability than LF + EGCG. Meanwhile, the complexes showed no cytotoxicity within the tested concentration range (12.5–200 μg/mL). The HIPPEs stabilized with LF-EGCG possessed smaller droplet size, higher ζ-potential, and more uniform oil/water proton distribution. Covalent treatment also enhanced the storage, thermal, freeze-thaw and physical stability of LF HIPPEs. Furthermore, due to the higher antioxidant activity and denser microstructure, LF-EGCG HIPPE can more effectively inhibit the oxidation of fish oil.</p></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101836\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007247/pdfft?md5=3be950c652bf273793b25bc76b61c3f6&pid=1-s2.0-S2590157524007247-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007247\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007247","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Preparation and characterization of lactoferrin-polyphenol conjugate with stabilizing effects on fish oil high internal phase Pickering emulsions
The combination of protein and polyphenol is an effective approach to improve the stability of protein emulsions. The lactoferrin (LF)-(−)-epigallocatechin-3-gallate (EGCG) covalent complex (LF-EGCG) was first prepared by alkali-induced reaction, then the structure and physicochemical properties between LF-EGCG and non-covalent complex (LF + EGCG) were compared, and finally the stability of complexes to fish oil high internal Pickering emulsions (HIPPEs) was tested. Results showed that LF-EGCG had stronger antioxidant activity, higher thermal stability, and better surface wettability than LF + EGCG. Meanwhile, the complexes showed no cytotoxicity within the tested concentration range (12.5–200 μg/mL). The HIPPEs stabilized with LF-EGCG possessed smaller droplet size, higher ζ-potential, and more uniform oil/water proton distribution. Covalent treatment also enhanced the storage, thermal, freeze-thaw and physical stability of LF HIPPEs. Furthermore, due to the higher antioxidant activity and denser microstructure, LF-EGCG HIPPE can more effectively inhibit the oxidation of fish oil.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.