Karol Dąbrowski;Łukasz Kubiszyn;Waldemar Gawron;Bartłomiej Seredyński;Krystian Michalczewski;Chao-Hsin Wu;Yuh-Renn Wu;Piotr Martyniuk
{"title":"高工作温度和超长波长 II 型超晶格 InAs/InAsSb 带间级联光电探测器的响应时间","authors":"Karol Dąbrowski;Łukasz Kubiszyn;Waldemar Gawron;Bartłomiej Seredyński;Krystian Michalczewski;Chao-Hsin Wu;Yuh-Renn Wu;Piotr Martyniuk","doi":"10.1109/LED.2024.3462152","DOIUrl":null,"url":null,"abstract":"The paper shows III-V InAs/InAsSb type-II superlattice (T2SL) very long wavelength (VLWIR, 100% cut-off wavelength, \n<inline-formula> <tex-math>$\\lambda _{\\textit {cut}-\\textit {off}}~\\sim ~16.5~\\mu $ </tex-math></inline-formula>\nm at 330 K) interband cascade photodetector designed to operate >300 K. The device circumvents the low quantum efficiency (QE) and resistance issues of the conventional “thick absorber” photovoltaic detectors designed for high operating temperature (HOT, >300 K) conditions. The 3-stage detector was grown by molecular beam epitaxy (MBE) on the lattice-mismatched GaAs substrates and GaSb buffer layer where stages were connected by the highly doped typical n+/p+ tunnel junctions. The time constant of the unbiased device reaches ~2.83 ns (210 K) and ~0.5 ns (330 K).","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2158-2161"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681300","citationCount":"0","resultStr":"{\"title\":\"The Response Time of the High Operating Temperature and Very Long Wavelength Type-II Superlattice InAs/InAsSb Interband Cascade Photodetectors\",\"authors\":\"Karol Dąbrowski;Łukasz Kubiszyn;Waldemar Gawron;Bartłomiej Seredyński;Krystian Michalczewski;Chao-Hsin Wu;Yuh-Renn Wu;Piotr Martyniuk\",\"doi\":\"10.1109/LED.2024.3462152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper shows III-V InAs/InAsSb type-II superlattice (T2SL) very long wavelength (VLWIR, 100% cut-off wavelength, \\n<inline-formula> <tex-math>$\\\\lambda _{\\\\textit {cut}-\\\\textit {off}}~\\\\sim ~16.5~\\\\mu $ </tex-math></inline-formula>\\nm at 330 K) interband cascade photodetector designed to operate >300 K. The device circumvents the low quantum efficiency (QE) and resistance issues of the conventional “thick absorber” photovoltaic detectors designed for high operating temperature (HOT, >300 K) conditions. The 3-stage detector was grown by molecular beam epitaxy (MBE) on the lattice-mismatched GaAs substrates and GaSb buffer layer where stages were connected by the highly doped typical n+/p+ tunnel junctions. The time constant of the unbiased device reaches ~2.83 ns (210 K) and ~0.5 ns (330 K).\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2158-2161\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681300\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681300/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681300/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Response Time of the High Operating Temperature and Very Long Wavelength Type-II Superlattice InAs/InAsSb Interband Cascade Photodetectors
The paper shows III-V InAs/InAsSb type-II superlattice (T2SL) very long wavelength (VLWIR, 100% cut-off wavelength,
$\lambda _{\textit {cut}-\textit {off}}~\sim ~16.5~\mu $
m at 330 K) interband cascade photodetector designed to operate >300 K. The device circumvents the low quantum efficiency (QE) and resistance issues of the conventional “thick absorber” photovoltaic detectors designed for high operating temperature (HOT, >300 K) conditions. The 3-stage detector was grown by molecular beam epitaxy (MBE) on the lattice-mismatched GaAs substrates and GaSb buffer layer where stages were connected by the highly doped typical n+/p+ tunnel junctions. The time constant of the unbiased device reaches ~2.83 ns (210 K) and ~0.5 ns (330 K).
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.