{"title":"大接触直径和间隙高电流真空电弧的数值研究","authors":"Xiaolong Huang;Shuangwei Zhao;Huikai Xu;Jiayi Song;Haibo Su;Wenjun Ning;Lihua Zhao;Shenli Jia","doi":"10.1109/TPS.2024.3398710","DOIUrl":null,"url":null,"abstract":"As the voltage level of the vacuum interrupter increases to 252 kV (245 kV), the contact diameter and gap will increase significantly. Based on the 2-D vacuum arc (VA) MHD model, this work explores the characteristics of large contact diameter (150 mm) and gap (70 mm) VA plasma. The simulation obtained the arc column plasma parameters distribution with different contact diameters, contact gap, cathode side current density distribution, breaking current size, and axial magnetic field (AMF). The simulation results show that the VA shrinks to a high degree when there is no AMF. As the AMF increases, the particle temperature and current density gradually change from a central agglomeration distribution to an annular distribution on the anode side. The control effect of the AMF on the VA weakens. Reducing the breaking current and the contact gap will make the axial current density distribution more uniform and the particle temperature lower. The reduction of the contact diameter is not conducive to breaking large diameter and large spacing VAs. The research results can provide an in-depth understanding of the switching characteristics of higher voltage vacuum circuit breakers and provide an essential theoretical basis for developing 252 kV vacuum circuit breakers.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4428-4438"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Large Contact Diameter and Gap High Current Vacuum Arc\",\"authors\":\"Xiaolong Huang;Shuangwei Zhao;Huikai Xu;Jiayi Song;Haibo Su;Wenjun Ning;Lihua Zhao;Shenli Jia\",\"doi\":\"10.1109/TPS.2024.3398710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the voltage level of the vacuum interrupter increases to 252 kV (245 kV), the contact diameter and gap will increase significantly. Based on the 2-D vacuum arc (VA) MHD model, this work explores the characteristics of large contact diameter (150 mm) and gap (70 mm) VA plasma. The simulation obtained the arc column plasma parameters distribution with different contact diameters, contact gap, cathode side current density distribution, breaking current size, and axial magnetic field (AMF). The simulation results show that the VA shrinks to a high degree when there is no AMF. As the AMF increases, the particle temperature and current density gradually change from a central agglomeration distribution to an annular distribution on the anode side. The control effect of the AMF on the VA weakens. Reducing the breaking current and the contact gap will make the axial current density distribution more uniform and the particle temperature lower. The reduction of the contact diameter is not conducive to breaking large diameter and large spacing VAs. The research results can provide an in-depth understanding of the switching characteristics of higher voltage vacuum circuit breakers and provide an essential theoretical basis for developing 252 kV vacuum circuit breakers.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 9\",\"pages\":\"4428-4438\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682481/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10682481/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Numerical Study of Large Contact Diameter and Gap High Current Vacuum Arc
As the voltage level of the vacuum interrupter increases to 252 kV (245 kV), the contact diameter and gap will increase significantly. Based on the 2-D vacuum arc (VA) MHD model, this work explores the characteristics of large contact diameter (150 mm) and gap (70 mm) VA plasma. The simulation obtained the arc column plasma parameters distribution with different contact diameters, contact gap, cathode side current density distribution, breaking current size, and axial magnetic field (AMF). The simulation results show that the VA shrinks to a high degree when there is no AMF. As the AMF increases, the particle temperature and current density gradually change from a central agglomeration distribution to an annular distribution on the anode side. The control effect of the AMF on the VA weakens. Reducing the breaking current and the contact gap will make the axial current density distribution more uniform and the particle temperature lower. The reduction of the contact diameter is not conducive to breaking large diameter and large spacing VAs. The research results can provide an in-depth understanding of the switching characteristics of higher voltage vacuum circuit breakers and provide an essential theoretical basis for developing 252 kV vacuum circuit breakers.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.