二氧化锡-1 的光学和热电特性理论分析

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Vahid Hosseini, Mohaddeseh Abbasnejad and Mohammad Reza Mohammadizadeh
{"title":"二氧化锡-1 的光学和热电特性理论分析","authors":"S. Vahid Hosseini, Mohaddeseh Abbasnejad and Mohammad Reza Mohammadizadeh","doi":"10.1039/D4TC02505A","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the optical and thermoelectric properties of metallic (cubic TiO, monoclinic TiO, and γ-Ti<small><sub>3</sub></small>O<small><sub>5</sub></small>) and semiconducting (Ti<small><sub>2</sub></small>O<small><sub>3</sub></small>, α-Ti<small><sub>3</sub></small>O<small><sub>5</sub></small>, β-Ti<small><sub>3</sub></small>O<small><sub>5</sub></small>, Ti<small><sub>4</sub></small>O<small><sub>7</sub></small>, and Ti<small><sub>5</sub></small>O<small><sub>9</sub></small>) phases of Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small>, using various functionals including PBE, mBJ, PBE+<em>U</em>, and YS-PBE0. The YS-PBE0 and random phase approximation approaches accurately predict the electronic and optical bandgaps for semiconducting phases, which align well with the experimental data. For the case of semiconducting phases, two significant optical absorption peaks are identified: one in the infrared due to (t<small><sub>2g</sub></small>–e<small><sub>g</sub></small>) interband transitions and another in the ultraviolet due to O-2p to Ti-3d intraband transitions. The semiconducting phases demonstrate impressive Seebeck coefficients (800–1200 μV K<small><sup>−1</sup></small>), driven by large effective mass and flat bands near the Fermi level. The electronic relaxation times are estimated to be 10<small><sup>−14</sup></small> to 10<small><sup>−16</sup></small> seconds for Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small> structures. Although the thermoelectric figure of merit of Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small> phases is low (&lt;1), there is possibility for improvement through optimizing carrier concentration. These findings suggest that Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small> can be considered as potential materials for thermoelectric applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical analysis of optical and thermoelectric characteristics of TinO2n−1†\",\"authors\":\"S. Vahid Hosseini, Mohaddeseh Abbasnejad and Mohammad Reza Mohammadizadeh\",\"doi\":\"10.1039/D4TC02505A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the optical and thermoelectric properties of metallic (cubic TiO, monoclinic TiO, and γ-Ti<small><sub>3</sub></small>O<small><sub>5</sub></small>) and semiconducting (Ti<small><sub>2</sub></small>O<small><sub>3</sub></small>, α-Ti<small><sub>3</sub></small>O<small><sub>5</sub></small>, β-Ti<small><sub>3</sub></small>O<small><sub>5</sub></small>, Ti<small><sub>4</sub></small>O<small><sub>7</sub></small>, and Ti<small><sub>5</sub></small>O<small><sub>9</sub></small>) phases of Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small>, using various functionals including PBE, mBJ, PBE+<em>U</em>, and YS-PBE0. The YS-PBE0 and random phase approximation approaches accurately predict the electronic and optical bandgaps for semiconducting phases, which align well with the experimental data. For the case of semiconducting phases, two significant optical absorption peaks are identified: one in the infrared due to (t<small><sub>2g</sub></small>–e<small><sub>g</sub></small>) interband transitions and another in the ultraviolet due to O-2p to Ti-3d intraband transitions. The semiconducting phases demonstrate impressive Seebeck coefficients (800–1200 μV K<small><sup>−1</sup></small>), driven by large effective mass and flat bands near the Fermi level. The electronic relaxation times are estimated to be 10<small><sup>−14</sup></small> to 10<small><sup>−16</sup></small> seconds for Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small> structures. Although the thermoelectric figure of merit of Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small> phases is low (&lt;1), there is possibility for improvement through optimizing carrier concentration. These findings suggest that Ti<small><sub><em>n</em></sub></small>O<small><sub>2<em>n</em>−1</sub></small> can be considered as potential materials for thermoelectric applications.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02505a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02505a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用 PBE、mBJ、PBE+U 和 YS-PBE0 等多种函数研究了 TinO2n-1 的金属相(立方 TiO、单斜 TiO 和 γ-Ti3O5)和半导体相(Ti2O3、α-Ti3O5、β-Ti3O5、Ti4O7 和 Ti5O9)的光学和热电性能。YS-PBE0 和随机相近似方法准确地预测了半导体相的电子和光学带隙,与实验数据非常吻合。就半导体相而言,发现了两个重要的光吸收峰:一个在红外,由 (t2g-eg) 带间跃迁引起;另一个在紫外,由 O-2p 到 Ti-3d 带内跃迁引起。在费米水平附近的大有效质量和平坦带的驱动下,半导体相显示出惊人的塞贝克系数(800-1200 μV K-1)。据估计,TinO2n-1 结构的电子弛豫时间为 10-14 至 10-16 秒。虽然 TinO2n-1 相的热电功勋值较低 (<1),但仍有可能通过优化载流子浓度得到改善。这些发现表明,TinO2n-1 可被视为热电应用的潜在材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical analysis of optical and thermoelectric characteristics of TinO2n−1†

Theoretical analysis of optical and thermoelectric characteristics of TinO2n−1†

Theoretical analysis of optical and thermoelectric characteristics of TinO2n−1†

This study investigates the optical and thermoelectric properties of metallic (cubic TiO, monoclinic TiO, and γ-Ti3O5) and semiconducting (Ti2O3, α-Ti3O5, β-Ti3O5, Ti4O7, and Ti5O9) phases of TinO2n−1, using various functionals including PBE, mBJ, PBE+U, and YS-PBE0. The YS-PBE0 and random phase approximation approaches accurately predict the electronic and optical bandgaps for semiconducting phases, which align well with the experimental data. For the case of semiconducting phases, two significant optical absorption peaks are identified: one in the infrared due to (t2g–eg) interband transitions and another in the ultraviolet due to O-2p to Ti-3d intraband transitions. The semiconducting phases demonstrate impressive Seebeck coefficients (800–1200 μV K−1), driven by large effective mass and flat bands near the Fermi level. The electronic relaxation times are estimated to be 10−14 to 10−16 seconds for TinO2n−1 structures. Although the thermoelectric figure of merit of TinO2n−1 phases is low (<1), there is possibility for improvement through optimizing carrier concentration. These findings suggest that TinO2n−1 can be considered as potential materials for thermoelectric applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信