{"title":"促进 5G 基站与雷达高度计共存的护带保护计划","authors":"Jiaqi Li, Seung-Hoon Hwang","doi":"10.3390/electronics13183681","DOIUrl":null,"url":null,"abstract":"Reformation of the 3.7–4.0 GHz band to expand 5G communication deployment poses a risk of 5G signals disrupting radar altimeter operation, leading to data loss or inaccuracies. Thus, this paper proposes a guard band protection method to facilitate the coexistence of 5G base stations and radar altimeters operating in the 4.2–4.4 GHz band. To enhance the adjacent channel leakage ratio (ACLR), we implemented spectral regrowth on an oversampled waveform using a high-power amplifier model, filtering out-of-band spectral emissions. The results demonstrated that a 150 MHz guard band enables coexistence, except in the case of the 16-by-16 antenna array in rural environments. Notably, for the 4-by-4 antenna array in urban environments, coexistence can be achieved using a 50 MHz guard band. The proposed mitigation techniques may also be extended to promote coexistence between non-terrestrial networks and 5G communication systems, including satellites, unmanned aerial vehicles, and hot air balloons.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guard Band Protection Scheme to Facilitate Coexistence of 5G Base Stations and Radar Altimeters\",\"authors\":\"Jiaqi Li, Seung-Hoon Hwang\",\"doi\":\"10.3390/electronics13183681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reformation of the 3.7–4.0 GHz band to expand 5G communication deployment poses a risk of 5G signals disrupting radar altimeter operation, leading to data loss or inaccuracies. Thus, this paper proposes a guard band protection method to facilitate the coexistence of 5G base stations and radar altimeters operating in the 4.2–4.4 GHz band. To enhance the adjacent channel leakage ratio (ACLR), we implemented spectral regrowth on an oversampled waveform using a high-power amplifier model, filtering out-of-band spectral emissions. The results demonstrated that a 150 MHz guard band enables coexistence, except in the case of the 16-by-16 antenna array in rural environments. Notably, for the 4-by-4 antenna array in urban environments, coexistence can be achieved using a 50 MHz guard band. The proposed mitigation techniques may also be extended to promote coexistence between non-terrestrial networks and 5G communication systems, including satellites, unmanned aerial vehicles, and hot air balloons.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183681\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183681","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Guard Band Protection Scheme to Facilitate Coexistence of 5G Base Stations and Radar Altimeters
Reformation of the 3.7–4.0 GHz band to expand 5G communication deployment poses a risk of 5G signals disrupting radar altimeter operation, leading to data loss or inaccuracies. Thus, this paper proposes a guard band protection method to facilitate the coexistence of 5G base stations and radar altimeters operating in the 4.2–4.4 GHz band. To enhance the adjacent channel leakage ratio (ACLR), we implemented spectral regrowth on an oversampled waveform using a high-power amplifier model, filtering out-of-band spectral emissions. The results demonstrated that a 150 MHz guard band enables coexistence, except in the case of the 16-by-16 antenna array in rural environments. Notably, for the 4-by-4 antenna array in urban environments, coexistence can be achieved using a 50 MHz guard band. The proposed mitigation techniques may also be extended to promote coexistence between non-terrestrial networks and 5G communication systems, including satellites, unmanned aerial vehicles, and hot air balloons.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.