Wei Cai, Weijie Gao, Xinhao Jiang, Xin Wang, Xingyu Di
{"title":"用于伪装物体检测的去噪扩散隐含模型","authors":"Wei Cai, Weijie Gao, Xinhao Jiang, Xin Wang, Xingyu Di","doi":"10.3390/electronics13183690","DOIUrl":null,"url":null,"abstract":"Camouflaged object detection (COD) is a challenging task that involves identifying objects that closely resemble their background. In order to detect camouflaged objects more accurately, we propose a diffusion model for the COD network called DMNet. DMNet formulates COD as a denoising diffusion process from noisy boxes to prediction boxes. During the training stage, random boxes diffuse from ground-truth boxes, and DMNet learns to reverse this process. In the sampling stage, DMNet progressively refines random boxes to prediction boxes. In addition, due to the camouflaged object’s blurred appearance and the low contrast between it and the background, the feature extraction stage of the network is challenging. Firstly, we proposed a parallel fusion module (PFM) to enhance the information extracted from the backbone. Then, we designed a progressive feature pyramid network (PFPN) for feature fusion, in which the upsample adaptive spatial fusion module (UAF) balances the different feature information by assigning weights to different layers. Finally, a location refinement module (LRM) is constructed to make DMNet pay attention to the boundary details. We compared DMNet with other classical object-detection models on the COD10K dataset. Experimental results indicated that DMNet outperformed others, achieving optimal effects across six evaluation metrics and significantly enhancing detection accuracy.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising Diffusion Implicit Model for Camouflaged Object Detection\",\"authors\":\"Wei Cai, Weijie Gao, Xinhao Jiang, Xin Wang, Xingyu Di\",\"doi\":\"10.3390/electronics13183690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camouflaged object detection (COD) is a challenging task that involves identifying objects that closely resemble their background. In order to detect camouflaged objects more accurately, we propose a diffusion model for the COD network called DMNet. DMNet formulates COD as a denoising diffusion process from noisy boxes to prediction boxes. During the training stage, random boxes diffuse from ground-truth boxes, and DMNet learns to reverse this process. In the sampling stage, DMNet progressively refines random boxes to prediction boxes. In addition, due to the camouflaged object’s blurred appearance and the low contrast between it and the background, the feature extraction stage of the network is challenging. Firstly, we proposed a parallel fusion module (PFM) to enhance the information extracted from the backbone. Then, we designed a progressive feature pyramid network (PFPN) for feature fusion, in which the upsample adaptive spatial fusion module (UAF) balances the different feature information by assigning weights to different layers. Finally, a location refinement module (LRM) is constructed to make DMNet pay attention to the boundary details. We compared DMNet with other classical object-detection models on the COD10K dataset. Experimental results indicated that DMNet outperformed others, achieving optimal effects across six evaluation metrics and significantly enhancing detection accuracy.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183690\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183690","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Denoising Diffusion Implicit Model for Camouflaged Object Detection
Camouflaged object detection (COD) is a challenging task that involves identifying objects that closely resemble their background. In order to detect camouflaged objects more accurately, we propose a diffusion model for the COD network called DMNet. DMNet formulates COD as a denoising diffusion process from noisy boxes to prediction boxes. During the training stage, random boxes diffuse from ground-truth boxes, and DMNet learns to reverse this process. In the sampling stage, DMNet progressively refines random boxes to prediction boxes. In addition, due to the camouflaged object’s blurred appearance and the low contrast between it and the background, the feature extraction stage of the network is challenging. Firstly, we proposed a parallel fusion module (PFM) to enhance the information extracted from the backbone. Then, we designed a progressive feature pyramid network (PFPN) for feature fusion, in which the upsample adaptive spatial fusion module (UAF) balances the different feature information by assigning weights to different layers. Finally, a location refinement module (LRM) is constructed to make DMNet pay attention to the boundary details. We compared DMNet with other classical object-detection models on the COD10K dataset. Experimental results indicated that DMNet outperformed others, achieving optimal effects across six evaluation metrics and significantly enhancing detection accuracy.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.