{"title":"用于碳基 SWIR 光电探测器的低功耗、高分辨率模拟前端电路","authors":"Yuyan Zhang, Zhifeng Chen, Wenli Liao, Weirong Xi, Chengying Chen, Jianhua Jiang","doi":"10.3390/electronics13183708","DOIUrl":null,"url":null,"abstract":"Carbon nanotube field-effect transistors (CNT-FETs) have shown great promise in infrared image detection due to their high mobility, low cost, and compatibility with silicon-based technologies. This paper presents the design and simulation of a column-level analog front-end (AFE) circuit tailored for carbon-based short-wave infrared (SWIR) photodetectors. The AFE integrates a Capacitor Trans-impedance Amplifier (CTIA) for current-to-voltage conversion, coupled with Correlated Double Sampling (CDS) for noise reduction and operational amplifier offset suppression. A 10-bit/125 kHz Successive Approximation analog-to-digital converter (SAR ADC) completes the signal processing chain, achieving rail-to-rail input/output with minimized component count. Fabricated using 0.18 μm CMOS technology, the AFE demonstrates a high signal-to-noise ratio (SNR) of 59.27 dB and an Effective Number of Bits (ENOB) of 9.35, with a detectable current range from 500 pA to 100.5 nA and a total power consumption of 7.5 mW. These results confirm the suitability of the proposed AFE for high-precision, low-power SWIR detection systems, with potential applications in medical imaging, night vision, and autonomous driving systems.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Power, High-Resolution Analog Front-End Circuit for Carbon-Based SWIR Photodetector\",\"authors\":\"Yuyan Zhang, Zhifeng Chen, Wenli Liao, Weirong Xi, Chengying Chen, Jianhua Jiang\",\"doi\":\"10.3390/electronics13183708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotube field-effect transistors (CNT-FETs) have shown great promise in infrared image detection due to their high mobility, low cost, and compatibility with silicon-based technologies. This paper presents the design and simulation of a column-level analog front-end (AFE) circuit tailored for carbon-based short-wave infrared (SWIR) photodetectors. The AFE integrates a Capacitor Trans-impedance Amplifier (CTIA) for current-to-voltage conversion, coupled with Correlated Double Sampling (CDS) for noise reduction and operational amplifier offset suppression. A 10-bit/125 kHz Successive Approximation analog-to-digital converter (SAR ADC) completes the signal processing chain, achieving rail-to-rail input/output with minimized component count. Fabricated using 0.18 μm CMOS technology, the AFE demonstrates a high signal-to-noise ratio (SNR) of 59.27 dB and an Effective Number of Bits (ENOB) of 9.35, with a detectable current range from 500 pA to 100.5 nA and a total power consumption of 7.5 mW. These results confirm the suitability of the proposed AFE for high-precision, low-power SWIR detection systems, with potential applications in medical imaging, night vision, and autonomous driving systems.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183708\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183708","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Low-Power, High-Resolution Analog Front-End Circuit for Carbon-Based SWIR Photodetector
Carbon nanotube field-effect transistors (CNT-FETs) have shown great promise in infrared image detection due to their high mobility, low cost, and compatibility with silicon-based technologies. This paper presents the design and simulation of a column-level analog front-end (AFE) circuit tailored for carbon-based short-wave infrared (SWIR) photodetectors. The AFE integrates a Capacitor Trans-impedance Amplifier (CTIA) for current-to-voltage conversion, coupled with Correlated Double Sampling (CDS) for noise reduction and operational amplifier offset suppression. A 10-bit/125 kHz Successive Approximation analog-to-digital converter (SAR ADC) completes the signal processing chain, achieving rail-to-rail input/output with minimized component count. Fabricated using 0.18 μm CMOS technology, the AFE demonstrates a high signal-to-noise ratio (SNR) of 59.27 dB and an Effective Number of Bits (ENOB) of 9.35, with a detectable current range from 500 pA to 100.5 nA and a total power consumption of 7.5 mW. These results confirm the suitability of the proposed AFE for high-precision, low-power SWIR detection systems, with potential applications in medical imaging, night vision, and autonomous driving systems.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.