Juan Huang, Songlin Sun, Kai Long, Lairong Yin, Zhiyong Zhang
{"title":"基于临界安全距离的自动超车路径规划和轨迹跟踪控制","authors":"Juan Huang, Songlin Sun, Kai Long, Lairong Yin, Zhiyong Zhang","doi":"10.3390/electronics13183698","DOIUrl":null,"url":null,"abstract":"The overtaking process for autonomous vehicles must prioritize both efficiency and safety, with safe distance being a crucial parameter. To address this, we propose an automatic overtaking path planning method based on minimal safe distance, ensuring both maneuvering efficiency and safety. This method combines the steady movement and comfort of the constant velocity offset model with the smoothness of the sine function model, creating a mixed-function model that is effective for planning lateral motion. For precise longitudinal motion planning, the overtaking process is divided into five stages, with each stage’s velocity and travel time calculated. To enhance the control system, the model predictive control (MPC) algorithm is applied, establishing a robust trajectory tracking control system for overtaking. Numerical simulation results demonstrate that the proposed overtaking path planning method can generate smooth and continuous paths. Under the MPC framework, the autonomous vehicle efficiently and safely performs automatic overtaking maneuvers, showcasing the method’s potential to improve the performance and reliability of autonomous driving systems.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Overtaking Path Planning and Trajectory Tracking Control Based on Critical Safety Distance\",\"authors\":\"Juan Huang, Songlin Sun, Kai Long, Lairong Yin, Zhiyong Zhang\",\"doi\":\"10.3390/electronics13183698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The overtaking process for autonomous vehicles must prioritize both efficiency and safety, with safe distance being a crucial parameter. To address this, we propose an automatic overtaking path planning method based on minimal safe distance, ensuring both maneuvering efficiency and safety. This method combines the steady movement and comfort of the constant velocity offset model with the smoothness of the sine function model, creating a mixed-function model that is effective for planning lateral motion. For precise longitudinal motion planning, the overtaking process is divided into five stages, with each stage’s velocity and travel time calculated. To enhance the control system, the model predictive control (MPC) algorithm is applied, establishing a robust trajectory tracking control system for overtaking. Numerical simulation results demonstrate that the proposed overtaking path planning method can generate smooth and continuous paths. Under the MPC framework, the autonomous vehicle efficiently and safely performs automatic overtaking maneuvers, showcasing the method’s potential to improve the performance and reliability of autonomous driving systems.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183698\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183698","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automatic Overtaking Path Planning and Trajectory Tracking Control Based on Critical Safety Distance
The overtaking process for autonomous vehicles must prioritize both efficiency and safety, with safe distance being a crucial parameter. To address this, we propose an automatic overtaking path planning method based on minimal safe distance, ensuring both maneuvering efficiency and safety. This method combines the steady movement and comfort of the constant velocity offset model with the smoothness of the sine function model, creating a mixed-function model that is effective for planning lateral motion. For precise longitudinal motion planning, the overtaking process is divided into five stages, with each stage’s velocity and travel time calculated. To enhance the control system, the model predictive control (MPC) algorithm is applied, establishing a robust trajectory tracking control system for overtaking. Numerical simulation results demonstrate that the proposed overtaking path planning method can generate smooth and continuous paths. Under the MPC framework, the autonomous vehicle efficiently and safely performs automatic overtaking maneuvers, showcasing the method’s potential to improve the performance and reliability of autonomous driving systems.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.