Bereket Endale Bekele, Krzysztof Tokarz, Nebiyat Yilikal Gebeyehu, Bolesław Pochopień, Dariusz Mrozek
{"title":"物联网环境中基于 UDP 的数据传输(带确认)的性能评估(适用于各种网络拓扑结构","authors":"Bereket Endale Bekele, Krzysztof Tokarz, Nebiyat Yilikal Gebeyehu, Bolesław Pochopień, Dariusz Mrozek","doi":"10.3390/electronics13183697","DOIUrl":null,"url":null,"abstract":"The rapid expansion of Internet-of-Things (IoT) applications necessitates a thorough understanding of network configurations to address unique challenges across various use cases. This paper presents an in-depth analysis of three IoT network topologies: linear chain, structured tree, and dynamic transition networks, each designed to meet the specific requirements of industrial automation, home automation, and environmental monitoring. Key performance metrics, including round-trip time (RTT), server processing time (SPT), and power consumption, are evaluated through both simulation and hardware experiments. Additionally, this study introduces an enhanced UDP protocol featuring an acknowledgment mechanism and a power consumption evaluation, aiming to improve data transmission reliability over the standard UDP protocol. Packet loss is specifically measured in hardware experiments to compare the performance of standard and enhanced UDP protocols. The findings show that the enhanced UDP significantly reduces packet loss compared to the standard UDP, enhancing data delivery reliability across dynamic and structured networks, though it comes at the cost of slightly higher power consumption due to additional processing. For network topology performance, the linear chain topology provides stable processing but higher RTT, making it suitable for applications such as tunnel monitoring; the structured tree topology offers low energy consumption and fast communication, ideal for home automation; and the dynamic transition network, suited for industrial Automated Guided Vehicles (AGVs), encounters challenges with adaptive routing. These insights guide the optimization of communication protocols and network configurations for more efficient and reliable IoT deployments.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments\",\"authors\":\"Bereket Endale Bekele, Krzysztof Tokarz, Nebiyat Yilikal Gebeyehu, Bolesław Pochopień, Dariusz Mrozek\",\"doi\":\"10.3390/electronics13183697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid expansion of Internet-of-Things (IoT) applications necessitates a thorough understanding of network configurations to address unique challenges across various use cases. This paper presents an in-depth analysis of three IoT network topologies: linear chain, structured tree, and dynamic transition networks, each designed to meet the specific requirements of industrial automation, home automation, and environmental monitoring. Key performance metrics, including round-trip time (RTT), server processing time (SPT), and power consumption, are evaluated through both simulation and hardware experiments. Additionally, this study introduces an enhanced UDP protocol featuring an acknowledgment mechanism and a power consumption evaluation, aiming to improve data transmission reliability over the standard UDP protocol. Packet loss is specifically measured in hardware experiments to compare the performance of standard and enhanced UDP protocols. The findings show that the enhanced UDP significantly reduces packet loss compared to the standard UDP, enhancing data delivery reliability across dynamic and structured networks, though it comes at the cost of slightly higher power consumption due to additional processing. For network topology performance, the linear chain topology provides stable processing but higher RTT, making it suitable for applications such as tunnel monitoring; the structured tree topology offers low energy consumption and fast communication, ideal for home automation; and the dynamic transition network, suited for industrial Automated Guided Vehicles (AGVs), encounters challenges with adaptive routing. These insights guide the optimization of communication protocols and network configurations for more efficient and reliable IoT deployments.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183697\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183697","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments
The rapid expansion of Internet-of-Things (IoT) applications necessitates a thorough understanding of network configurations to address unique challenges across various use cases. This paper presents an in-depth analysis of three IoT network topologies: linear chain, structured tree, and dynamic transition networks, each designed to meet the specific requirements of industrial automation, home automation, and environmental monitoring. Key performance metrics, including round-trip time (RTT), server processing time (SPT), and power consumption, are evaluated through both simulation and hardware experiments. Additionally, this study introduces an enhanced UDP protocol featuring an acknowledgment mechanism and a power consumption evaluation, aiming to improve data transmission reliability over the standard UDP protocol. Packet loss is specifically measured in hardware experiments to compare the performance of standard and enhanced UDP protocols. The findings show that the enhanced UDP significantly reduces packet loss compared to the standard UDP, enhancing data delivery reliability across dynamic and structured networks, though it comes at the cost of slightly higher power consumption due to additional processing. For network topology performance, the linear chain topology provides stable processing but higher RTT, making it suitable for applications such as tunnel monitoring; the structured tree topology offers low energy consumption and fast communication, ideal for home automation; and the dynamic transition network, suited for industrial Automated Guided Vehicles (AGVs), encounters challenges with adaptive routing. These insights guide the optimization of communication protocols and network configurations for more efficient and reliable IoT deployments.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.