L. N. Lobanov, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, N. M. Zubarev
{"title":"在充气磁化二极管中形成定向宽孔径失控电子流","authors":"L. N. Lobanov, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, N. M. Zubarev","doi":"10.1063/5.0218882","DOIUrl":null,"url":null,"abstract":"This paper presents the results of research, development, and testing of magnetically insulated air diodes with replaceable graphite and stainless-steel tubular and coaxial cathodes of various configurations capable of generating directed bunches of runaway electrons. At the anode, the bunches have cross sections shaped as circles or rings with an outer diameter of 1–2 cm. The durations of the bunches, which carry currents of a few to tens of amperes, range from tens of picoseconds to 100 ps, and their charges range from tenths of a nanocoulomb to a few nanocoulombs. The kinetic energy of the bunch electrons at the peak of the current pulse is typically of the order of 150 keV. The bunch parameters are set (and varied) by varying the amplitude and duration of the subnanosecond high-voltage pulse driving the diode; they depend on the cathode material and on the strength and profile of the applied external magnetic field. The bunches, retaining their cross-sectional structure, are brought out from the diode, along the field lines, through a thin foil or mesh anode into the open space with a quasi-uniform magnetic field between two Helmholtz coils. In this space, the samples to be irradiated with electrons, similarly to objects exposed to radiation in various experiments and technological applications, can be placed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of directed wide-aperture flows of runaway electrons in air-filled magnetized diodes\",\"authors\":\"L. N. Lobanov, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, N. M. Zubarev\",\"doi\":\"10.1063/5.0218882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of research, development, and testing of magnetically insulated air diodes with replaceable graphite and stainless-steel tubular and coaxial cathodes of various configurations capable of generating directed bunches of runaway electrons. At the anode, the bunches have cross sections shaped as circles or rings with an outer diameter of 1–2 cm. The durations of the bunches, which carry currents of a few to tens of amperes, range from tens of picoseconds to 100 ps, and their charges range from tenths of a nanocoulomb to a few nanocoulombs. The kinetic energy of the bunch electrons at the peak of the current pulse is typically of the order of 150 keV. The bunch parameters are set (and varied) by varying the amplitude and duration of the subnanosecond high-voltage pulse driving the diode; they depend on the cathode material and on the strength and profile of the applied external magnetic field. The bunches, retaining their cross-sectional structure, are brought out from the diode, along the field lines, through a thin foil or mesh anode into the open space with a quasi-uniform magnetic field between two Helmholtz coils. In this space, the samples to be irradiated with electrons, similarly to objects exposed to radiation in various experiments and technological applications, can be placed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218882\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0218882","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Formation of directed wide-aperture flows of runaway electrons in air-filled magnetized diodes
This paper presents the results of research, development, and testing of magnetically insulated air diodes with replaceable graphite and stainless-steel tubular and coaxial cathodes of various configurations capable of generating directed bunches of runaway electrons. At the anode, the bunches have cross sections shaped as circles or rings with an outer diameter of 1–2 cm. The durations of the bunches, which carry currents of a few to tens of amperes, range from tens of picoseconds to 100 ps, and their charges range from tenths of a nanocoulomb to a few nanocoulombs. The kinetic energy of the bunch electrons at the peak of the current pulse is typically of the order of 150 keV. The bunch parameters are set (and varied) by varying the amplitude and duration of the subnanosecond high-voltage pulse driving the diode; they depend on the cathode material and on the strength and profile of the applied external magnetic field. The bunches, retaining their cross-sectional structure, are brought out from the diode, along the field lines, through a thin foil or mesh anode into the open space with a quasi-uniform magnetic field between two Helmholtz coils. In this space, the samples to be irradiated with electrons, similarly to objects exposed to radiation in various experiments and technological applications, can be placed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.