器件建模的智能与规则相结合:利用混合神经网络和模糊逻辑推理系统逼近 AlGaN/GaN HEMT 的行为

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ahmad Khusro;Saddam Husain;Mohammad S. Hashmi
{"title":"器件建模的智能与规则相结合:利用混合神经网络和模糊逻辑推理系统逼近 AlGaN/GaN HEMT 的行为","authors":"Ahmad Khusro;Saddam Husain;Mohammad S. Hashmi","doi":"10.1109/JEDS.2024.3461169","DOIUrl":null,"url":null,"abstract":"This paper uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) to investigate and propose a new alternative behavioral modeling technique for microwave power transistors. Utilizing measured I-V characteristics, associated parameters like transconductance \n<inline-formula> <tex-math>$(g_{\\text {m}})$ </tex-math></inline-formula>\n and output conductance \n<inline-formula> <tex-math>$(g_{\\text {ds}})$ </tex-math></inline-formula>\n, etc., S-parameters characteristics, and RF performance parameters such as unity current gain frequency \n<inline-formula> <tex-math>$(f_{\\text {T}})$ </tex-math></inline-formula>\n, maximum unilateral gain frequency \n<inline-formula> <tex-math>$(f_{\\max })$ </tex-math></inline-formula>\n, ANFIS-based behavioral models are developed for Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) and validated. The models have been developed using two distinct devices with dimensions of \n<inline-formula> <tex-math>$10\\times 200~\\mu m$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$10\\times 250~\\mu m$ </tex-math></inline-formula>\n for multi-bias conditions and over a broad frequency range (0.5 to 43.5 GHz). Subsequently, the proposed model performance is validated on devices with geometries of \n<inline-formula> <tex-math>$10\\times 220~\\mu m$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$4\\times 100~\\mu m$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$2\\times 200~\\mu m$ </tex-math></inline-formula>\n to examine the interpolation accuracy, extrapolation potential, and scalability. Here, ANFIS utilizes the subtractive clustering method to process the measurement characteristics by computing the clusters and opts for the best-performing model using error and number of fuzzy rules as criteria. The parameters involved in the fuzzy representation are trained using neural network algorithms, namely gradient-descent and least squares estimate. The proposed models are subsequently incorporated in a commercial circuit simulator (Keysight’s ADS) and the class-F power amplifier’s gain and stability characteristics are computed and studied.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680392","citationCount":"0","resultStr":"{\"title\":\"Combining Intelligence With Rules for Device Modeling: Approximating the Behavior of AlGaN/GaN HEMTs Using a Hybrid Neural Network and Fuzzy Logic Inference System\",\"authors\":\"Ahmad Khusro;Saddam Husain;Mohammad S. Hashmi\",\"doi\":\"10.1109/JEDS.2024.3461169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) to investigate and propose a new alternative behavioral modeling technique for microwave power transistors. Utilizing measured I-V characteristics, associated parameters like transconductance \\n<inline-formula> <tex-math>$(g_{\\\\text {m}})$ </tex-math></inline-formula>\\n and output conductance \\n<inline-formula> <tex-math>$(g_{\\\\text {ds}})$ </tex-math></inline-formula>\\n, etc., S-parameters characteristics, and RF performance parameters such as unity current gain frequency \\n<inline-formula> <tex-math>$(f_{\\\\text {T}})$ </tex-math></inline-formula>\\n, maximum unilateral gain frequency \\n<inline-formula> <tex-math>$(f_{\\\\max })$ </tex-math></inline-formula>\\n, ANFIS-based behavioral models are developed for Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) and validated. The models have been developed using two distinct devices with dimensions of \\n<inline-formula> <tex-math>$10\\\\times 200~\\\\mu m$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$10\\\\times 250~\\\\mu m$ </tex-math></inline-formula>\\n for multi-bias conditions and over a broad frequency range (0.5 to 43.5 GHz). Subsequently, the proposed model performance is validated on devices with geometries of \\n<inline-formula> <tex-math>$10\\\\times 220~\\\\mu m$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$4\\\\times 100~\\\\mu m$ </tex-math></inline-formula>\\n, and \\n<inline-formula> <tex-math>$2\\\\times 200~\\\\mu m$ </tex-math></inline-formula>\\n to examine the interpolation accuracy, extrapolation potential, and scalability. Here, ANFIS utilizes the subtractive clustering method to process the measurement characteristics by computing the clusters and opts for the best-performing model using error and number of fuzzy rules as criteria. The parameters involved in the fuzzy representation are trained using neural network algorithms, namely gradient-descent and least squares estimate. The proposed models are subsequently incorporated in a commercial circuit simulator (Keysight’s ADS) and the class-F power amplifier’s gain and stability characteristics are computed and studied.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680392\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10680392/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10680392/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用自适应神经模糊推理系统(ANFIS)研究并提出了一种新的微波功率晶体管替代行为建模技术。利用测量的 I-V 特性、相关参数,如跨导 $(g_{\text {m}}$ 和输出电导 $(g_{\text {ds}}$ 等、针对氮化镓(GaN)高电子迁移率晶体管(HEMT)开发了基于 ANFIS 的行为模型,并进行了验证。这些模型是在多偏压条件和宽频率范围(0.5 至 43.5 GHz)内使用两个不同的器件开发的,这两个器件的尺寸分别为 10/times 200~\mu m$ 和 10/times 250~\mu m$。随后,在几何尺寸为 $10\times 220~\mu m$ 、 $4\times 100~\mu m$ 和 $2\times 200~\mu m$ 的器件上验证了所提出的模型性能,以检查插值精度、外推潜力和可扩展性。在这里,ANFIS 利用减法聚类方法,通过计算聚类来处理测量特征,并以误差和模糊规则数量为标准,选择表现最佳的模型。使用神经网络算法,即梯度下降和最小二乘估计,对模糊表示所涉及的参数进行训练。随后,将提出的模型纳入商用电路模拟器(Keysight 的 ADS),并计算和研究 F 类功率放大器的增益和稳定性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Intelligence With Rules for Device Modeling: Approximating the Behavior of AlGaN/GaN HEMTs Using a Hybrid Neural Network and Fuzzy Logic Inference System
This paper uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) to investigate and propose a new alternative behavioral modeling technique for microwave power transistors. Utilizing measured I-V characteristics, associated parameters like transconductance $(g_{\text {m}})$ and output conductance $(g_{\text {ds}})$ , etc., S-parameters characteristics, and RF performance parameters such as unity current gain frequency $(f_{\text {T}})$ , maximum unilateral gain frequency $(f_{\max })$ , ANFIS-based behavioral models are developed for Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) and validated. The models have been developed using two distinct devices with dimensions of $10\times 200~\mu m$ and $10\times 250~\mu m$ for multi-bias conditions and over a broad frequency range (0.5 to 43.5 GHz). Subsequently, the proposed model performance is validated on devices with geometries of $10\times 220~\mu m$ , $4\times 100~\mu m$ , and $2\times 200~\mu m$ to examine the interpolation accuracy, extrapolation potential, and scalability. Here, ANFIS utilizes the subtractive clustering method to process the measurement characteristics by computing the clusters and opts for the best-performing model using error and number of fuzzy rules as criteria. The parameters involved in the fuzzy representation are trained using neural network algorithms, namely gradient-descent and least squares estimate. The proposed models are subsequently incorporated in a commercial circuit simulator (Keysight’s ADS) and the class-F power amplifier’s gain and stability characteristics are computed and studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信