Phlomis longifolia Boiss.气生部分(花、花萼、叶):GC-MS 分析和生物特性

IF 1.5 4区 医学 Q4 CHEMISTRY, MEDICINAL
Muhannad Hasan, Imad Hwija, Yaseer Mossa
{"title":"Phlomis longifolia Boiss.气生部分(花、花萼、叶):GC-MS 分析和生物特性","authors":"Muhannad Hasan, Imad Hwija, Yaseer Mossa","doi":"10.1177/1934578x241282866","DOIUrl":null,"url":null,"abstract":"Objective/Background: Phlomis longifolia Boiss. & C.I. Blanche. is one of the significant medicinal plants extensively utilized in folk medicine in Syria. So, this study aimed to identify the chemical components with potential pharmacological properties of essential oils extracted from the aerial parts of the Syrian P. longifolia plant for the first time. Methods: The aerial parts of the plant were collected from a mountainous area in Latakia Province, Syria. Subsequently, the essential oils were obtained using hydrodistillation with a yield of (0.14% for flowers, 0.075% for calyxes, and 0.19% for leaves) using a Clevenger-type apparatus and analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Results: A total of 63, 61, and 48 compounds, which represent (98.0%, 97.1%, and 97.9%) of the total oils, were identified for flowers, calyxes, and leaves, respectively. The major compounds identified in the flower's essential oil were: widdrol (29.8%), β-caryophyllene (9.7%), and (E)-nerolidyl acetate (5.8%). While in the calyx's essential oil were: (E)-nerolidyl acetate (8.6%), α-humulene (8.1%), and β-caryophyllene (7.7%). As for the leave's essential oil were: (E)-nerolidyl acetate (11.4%), β-caryophyllene (9.5%), α-amorphene (8.8%), caryophyllene oxide (6.7%), α-humulene (5.3%), and 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (5.2%). Additionally, the majority of the identified compounds have various biological activities, according to the published literature. Conclusion: In this work, the chemical composition of essential oils extracted from the aerial parts of P. longifolia was determined for the first time by GC-MS. Terpenes were the dominant chemical content of essential oils (83.3% for flowers, 72.7% for calyxes, and 80.9 for leaves), and sesquiterpenes had the highest concentration among them (77.3% for flowers, 65.7% for calyxes, and 77.1% for leaves). These compounds are known for their diverse biological activities and promote the use of such plants in phytopharmaceuticals.","PeriodicalId":19019,"journal":{"name":"Natural Product Communications","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Essential Oils from Phlomis longifolia Boiss. & C.I. Blanche. Aerial Parts (Flowers, Calyxes, Leaves): GC-MS Analyzes and Biological Properties\",\"authors\":\"Muhannad Hasan, Imad Hwija, Yaseer Mossa\",\"doi\":\"10.1177/1934578x241282866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective/Background: Phlomis longifolia Boiss. & C.I. Blanche. is one of the significant medicinal plants extensively utilized in folk medicine in Syria. So, this study aimed to identify the chemical components with potential pharmacological properties of essential oils extracted from the aerial parts of the Syrian P. longifolia plant for the first time. Methods: The aerial parts of the plant were collected from a mountainous area in Latakia Province, Syria. Subsequently, the essential oils were obtained using hydrodistillation with a yield of (0.14% for flowers, 0.075% for calyxes, and 0.19% for leaves) using a Clevenger-type apparatus and analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Results: A total of 63, 61, and 48 compounds, which represent (98.0%, 97.1%, and 97.9%) of the total oils, were identified for flowers, calyxes, and leaves, respectively. The major compounds identified in the flower's essential oil were: widdrol (29.8%), β-caryophyllene (9.7%), and (E)-nerolidyl acetate (5.8%). While in the calyx's essential oil were: (E)-nerolidyl acetate (8.6%), α-humulene (8.1%), and β-caryophyllene (7.7%). As for the leave's essential oil were: (E)-nerolidyl acetate (11.4%), β-caryophyllene (9.5%), α-amorphene (8.8%), caryophyllene oxide (6.7%), α-humulene (5.3%), and 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (5.2%). Additionally, the majority of the identified compounds have various biological activities, according to the published literature. Conclusion: In this work, the chemical composition of essential oils extracted from the aerial parts of P. longifolia was determined for the first time by GC-MS. Terpenes were the dominant chemical content of essential oils (83.3% for flowers, 72.7% for calyxes, and 80.9 for leaves), and sesquiterpenes had the highest concentration among them (77.3% for flowers, 65.7% for calyxes, and 77.1% for leaves). These compounds are known for their diverse biological activities and promote the use of such plants in phytopharmaceuticals.\",\"PeriodicalId\":19019,\"journal\":{\"name\":\"Natural Product Communications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1934578x241282866\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1934578x241282866","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的/背景:Phlomis longifolia Boiss.因此,本研究旨在首次鉴定从叙利亚长叶白头翁植物气生部分提取的精油中具有潜在药理特性的化学成分。研究方法从叙利亚拉塔基亚省的山区采集了该植物的气生部分。随后,使用 Clevenger 型仪器通过水蒸馏法提取精油(花的收率为 0.14%,萼的收率为 0.075%,叶的收率为 0.19%),并通过气相色谱-质谱联用仪(GC-MS)进行分析。结果:在花、花萼和叶中分别鉴定出 63、61 和 48 种化合物,占油总量的 98.0%、97.1% 和 97.9%。在花的精油中鉴定出的主要化合物有:威得醇(29.8%)、β-茶叶烯(9.7%)和(E)-nerolidyl acetate(5.8%)。而花萼的精油中则有(E)-乙酸nerolidyl酯(8.6%)、α-胡麻烯(8.1%)和β-石竹烯(7.7%)。香叶精油包括(E)-nerolidyl acetate (11.4%)、β-caryophyllene (9.5%)、α-amorphene (8.8%)、caryophyllene oxide (6.7%)、α-humulene (5.3%) 和 3,5-二羟基-6-甲基-2,3-二氢-4H-吡喃-4-酮 (5.2%)。此外,根据已发表的文献,大部分已鉴定化合物都具有不同的生物活性。结论在这项研究中,首次采用气相色谱-质谱法测定了从龙脑香叶(P. longifolia)气生部分提取的精油的化学成分。萜烯类化合物是精油的主要化学成分(花为 83.3%,萼为 72.7%,叶为 80.9%),其中倍半萜类化合物的含量最高(花为 77.3%,萼为 65.7%,叶为 77.1%)。这些化合物以其多样的生物活性而闻名,促进了此类植物在植物药物中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Essential Oils from Phlomis longifolia Boiss. & C.I. Blanche. Aerial Parts (Flowers, Calyxes, Leaves): GC-MS Analyzes and Biological Properties
Objective/Background: Phlomis longifolia Boiss. & C.I. Blanche. is one of the significant medicinal plants extensively utilized in folk medicine in Syria. So, this study aimed to identify the chemical components with potential pharmacological properties of essential oils extracted from the aerial parts of the Syrian P. longifolia plant for the first time. Methods: The aerial parts of the plant were collected from a mountainous area in Latakia Province, Syria. Subsequently, the essential oils were obtained using hydrodistillation with a yield of (0.14% for flowers, 0.075% for calyxes, and 0.19% for leaves) using a Clevenger-type apparatus and analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Results: A total of 63, 61, and 48 compounds, which represent (98.0%, 97.1%, and 97.9%) of the total oils, were identified for flowers, calyxes, and leaves, respectively. The major compounds identified in the flower's essential oil were: widdrol (29.8%), β-caryophyllene (9.7%), and (E)-nerolidyl acetate (5.8%). While in the calyx's essential oil were: (E)-nerolidyl acetate (8.6%), α-humulene (8.1%), and β-caryophyllene (7.7%). As for the leave's essential oil were: (E)-nerolidyl acetate (11.4%), β-caryophyllene (9.5%), α-amorphene (8.8%), caryophyllene oxide (6.7%), α-humulene (5.3%), and 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (5.2%). Additionally, the majority of the identified compounds have various biological activities, according to the published literature. Conclusion: In this work, the chemical composition of essential oils extracted from the aerial parts of P. longifolia was determined for the first time by GC-MS. Terpenes were the dominant chemical content of essential oils (83.3% for flowers, 72.7% for calyxes, and 80.9 for leaves), and sesquiterpenes had the highest concentration among them (77.3% for flowers, 65.7% for calyxes, and 77.1% for leaves). These compounds are known for their diverse biological activities and promote the use of such plants in phytopharmaceuticals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Communications
Natural Product Communications 工程技术-食品科技
CiteScore
3.10
自引率
11.10%
发文量
254
审稿时长
2.7 months
期刊介绍: Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products. Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products. Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信