通过合理控制铜掺杂促进溶液法碲化镉纳米晶体太阳能电池的发展†。

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qichuan Huang, Songwei Liu, Chenbo Min, Zheng Zhou, Donghuan Qin, Dan Wang, Wei Xu and Lintao Hou
{"title":"通过合理控制铜掺杂促进溶液法碲化镉纳米晶体太阳能电池的发展†。","authors":"Qichuan Huang, Songwei Liu, Chenbo Min, Zheng Zhou, Donghuan Qin, Dan Wang, Wei Xu and Lintao Hou","doi":"10.1039/D4TC02669A","DOIUrl":null,"url":null,"abstract":"<p >The back contact of p-type semiconductors and metal electrodes have always been a difficulty in fabricating photovoltaics with high performance. The incompatibility of high HOMO with a metal work function may lead to Schottky contact at a back semiconductor–metal interface and lead to device inversion. Thus, the performance of the photovoltaic is restricted, especially for solution-processed CdTe NC solar cells. In our research, we proposed using Cu salts as a Cu source to dope CdTe NCs and improve the back contact interface. Enhanced performance in solution-processed NC solar cells is achieved by introducing an engineered Cu salt layer (CuCl<small><sub>2</sub></small> and CuBr<small><sub>2</sub></small>). Exceptional performance is attained with the optimized CdTe NC doped with CuCl<small><sub>2</sub></small>, exhibiting a high short-circuit current of 20.20 mA cm<small><sup>−2</sup></small>, an open-circuit voltage of 0.58 V, and a fill factor of 53.74%, resulting in a power conversion efficiency of 6.3%. These results represent a significant improvement over the control group. Through detailed first principles studies and experimental verification, we demonstrate that the copper halide-doped CdTe NC thin film is promising to promote the carrier concentration of the CdTe NC and suppress carrier recombination by improving band alignment at the back contact interface.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting solution-processed CdTe nanocrystal solar cells via rationally controlled copper doping†\",\"authors\":\"Qichuan Huang, Songwei Liu, Chenbo Min, Zheng Zhou, Donghuan Qin, Dan Wang, Wei Xu and Lintao Hou\",\"doi\":\"10.1039/D4TC02669A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The back contact of p-type semiconductors and metal electrodes have always been a difficulty in fabricating photovoltaics with high performance. The incompatibility of high HOMO with a metal work function may lead to Schottky contact at a back semiconductor–metal interface and lead to device inversion. Thus, the performance of the photovoltaic is restricted, especially for solution-processed CdTe NC solar cells. In our research, we proposed using Cu salts as a Cu source to dope CdTe NCs and improve the back contact interface. Enhanced performance in solution-processed NC solar cells is achieved by introducing an engineered Cu salt layer (CuCl<small><sub>2</sub></small> and CuBr<small><sub>2</sub></small>). Exceptional performance is attained with the optimized CdTe NC doped with CuCl<small><sub>2</sub></small>, exhibiting a high short-circuit current of 20.20 mA cm<small><sup>−2</sup></small>, an open-circuit voltage of 0.58 V, and a fill factor of 53.74%, resulting in a power conversion efficiency of 6.3%. These results represent a significant improvement over the control group. Through detailed first principles studies and experimental verification, we demonstrate that the copper halide-doped CdTe NC thin film is promising to promote the carrier concentration of the CdTe NC and suppress carrier recombination by improving band alignment at the back contact interface.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02669a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02669a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

p 型半导体与金属电极的背面接触一直是制造高性能光伏器件的难题。高 HOMO 与金属功函数的不相容性可能会导致背面半导体-金属界面的肖特基接触,从而导致器件反转。因此,光电性能会受到限制,尤其是对于溶液法 CdTe NC 太阳能电池。在我们的研究中,我们提出使用铜盐作为铜源来掺杂碲化镉 NC 并改善背面接触界面。通过引入工程铜盐层(CuCl2 和 CuBr2),可提高溶液法 NC 太阳能电池的性能。优化后的掺杂 CuCl2 的碲化镉 NC 性能出众,短路电流高达 20.20 mA cm-2,开路电压为 0.58 V,填充因子为 53.74%,功率转换效率为 6.3%。与对照组相比,这些结果都有了明显改善。通过详细的第一性原理研究和实验验证,我们证明了卤化铜掺杂的碲化镉 NC 薄膜有望促进碲化镉 NC 的载流子浓度,并通过改善背接触界面的带排列来抑制载流子重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promoting solution-processed CdTe nanocrystal solar cells via rationally controlled copper doping†

Promoting solution-processed CdTe nanocrystal solar cells via rationally controlled copper doping†

The back contact of p-type semiconductors and metal electrodes have always been a difficulty in fabricating photovoltaics with high performance. The incompatibility of high HOMO with a metal work function may lead to Schottky contact at a back semiconductor–metal interface and lead to device inversion. Thus, the performance of the photovoltaic is restricted, especially for solution-processed CdTe NC solar cells. In our research, we proposed using Cu salts as a Cu source to dope CdTe NCs and improve the back contact interface. Enhanced performance in solution-processed NC solar cells is achieved by introducing an engineered Cu salt layer (CuCl2 and CuBr2). Exceptional performance is attained with the optimized CdTe NC doped with CuCl2, exhibiting a high short-circuit current of 20.20 mA cm−2, an open-circuit voltage of 0.58 V, and a fill factor of 53.74%, resulting in a power conversion efficiency of 6.3%. These results represent a significant improvement over the control group. Through detailed first principles studies and experimental verification, we demonstrate that the copper halide-doped CdTe NC thin film is promising to promote the carrier concentration of the CdTe NC and suppress carrier recombination by improving band alignment at the back contact interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信