利用机器学习方法和结构邻近机制预测官能团区域的红外光谱

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Chengchun Liu, Ruqiang Zou, Fanyang Mo
{"title":"利用机器学习方法和结构邻近机制预测官能团区域的红外光谱","authors":"Chengchun Liu, Ruqiang Zou, Fanyang Mo","doi":"10.1021/acs.analchem.4c01972","DOIUrl":null,"url":null,"abstract":"Infrared (IR) spectroscopy is a pivotal technique in chemical research for elucidating molecular structures and dynamics through vibrational and rotational transitions. However, the intricate molecular fingerprints characterized by unique vibrational and rotational patterns present substantial analytical challenges. Here, we present a machine learning approach employing a structural neighboring mechanism tailored to enhance the prediction and interpretation of infrared spectra. Our model distinguishes itself by honing in on chemical information proximal to functional groups, thereby significantly bolstering the accuracy, robustness, and interpretability of spectral predictions. This method not only demystifies the correlations between infrared spectral features and molecular structures but also offers a scalable and efficient paradigm for dissecting complex molecular interactions.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared Spectra Prediction for Functional Group Region Utilizing a Machine Learning Approach with Structural Neighboring Mechanism\",\"authors\":\"Chengchun Liu, Ruqiang Zou, Fanyang Mo\",\"doi\":\"10.1021/acs.analchem.4c01972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared (IR) spectroscopy is a pivotal technique in chemical research for elucidating molecular structures and dynamics through vibrational and rotational transitions. However, the intricate molecular fingerprints characterized by unique vibrational and rotational patterns present substantial analytical challenges. Here, we present a machine learning approach employing a structural neighboring mechanism tailored to enhance the prediction and interpretation of infrared spectra. Our model distinguishes itself by honing in on chemical information proximal to functional groups, thereby significantly bolstering the accuracy, robustness, and interpretability of spectral predictions. This method not only demystifies the correlations between infrared spectral features and molecular structures but also offers a scalable and efficient paradigm for dissecting complex molecular interactions.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c01972\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c01972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

红外(IR)光谱是化学研究中的一项关键技术,可通过振动和旋转跃迁阐明分子结构和动力学。然而,以独特的振动和旋转模式为特征的错综复杂的分子指纹带来了巨大的分析挑战。在这里,我们提出了一种机器学习方法,它采用了一种结构邻近机制,专门用于增强红外光谱的预测和解释。我们的模型与众不同之处在于它能准确捕捉功能基团附近的化学信息,从而显著提高光谱预测的准确性、稳健性和可解释性。这种方法不仅揭示了红外光谱特征与分子结构之间的相关性,还为剖析复杂的分子相互作用提供了一个可扩展的高效范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Infrared Spectra Prediction for Functional Group Region Utilizing a Machine Learning Approach with Structural Neighboring Mechanism

Infrared Spectra Prediction for Functional Group Region Utilizing a Machine Learning Approach with Structural Neighboring Mechanism
Infrared (IR) spectroscopy is a pivotal technique in chemical research for elucidating molecular structures and dynamics through vibrational and rotational transitions. However, the intricate molecular fingerprints characterized by unique vibrational and rotational patterns present substantial analytical challenges. Here, we present a machine learning approach employing a structural neighboring mechanism tailored to enhance the prediction and interpretation of infrared spectra. Our model distinguishes itself by honing in on chemical information proximal to functional groups, thereby significantly bolstering the accuracy, robustness, and interpretability of spectral predictions. This method not only demystifies the correlations between infrared spectral features and molecular structures but also offers a scalable and efficient paradigm for dissecting complex molecular interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信