{"title":"智能制造系统有限时间内生产、检测和维护的联合优化","authors":"","doi":"10.1016/j.ress.2024.110490","DOIUrl":null,"url":null,"abstract":"<div><p>Given the flexible and configurable characteristics of smart manufacturing systems with a limited time per manufacturing task, the assumption of infinite time for prostems is no longer applicable to the joint-control strategy. Consequently, a joint-control model that considers production, inspection, and maintenance within a finite-time scenario for smart manufacturing systems is proposed in this paper. The objective is to optimize overall production and maintenance functions to minimize the total system cost. Comparing the joint strategy under infinite time with the proposed finite-time approach reveals significant differences in unit costs between the two scenarios. To enhance the effectiveness of the model, a discrete iterative algorithm with multiple loops was developed. Through a case study, it was observed that 1) joint strategies implemented within a finite time horizon were more cost-effective than those under infinite time, thus emphasizing the need for business managers to develop strategies within a finite time frame; 2) different production planning and efficiency levels had varying effects on the final joint strategy, necessitating customized strategies based on different production durations. Overall, the research gap regarding joint strategies within a finite-time context was addressed in this research, serving as a methodological foundation for practitioners to develop various strategies that minimize total costs across diverse real-world scenarios.</p></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint optimization of production, inspection, and maintenance under finite time for smart manufacturing systems\",\"authors\":\"\",\"doi\":\"10.1016/j.ress.2024.110490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the flexible and configurable characteristics of smart manufacturing systems with a limited time per manufacturing task, the assumption of infinite time for prostems is no longer applicable to the joint-control strategy. Consequently, a joint-control model that considers production, inspection, and maintenance within a finite-time scenario for smart manufacturing systems is proposed in this paper. The objective is to optimize overall production and maintenance functions to minimize the total system cost. Comparing the joint strategy under infinite time with the proposed finite-time approach reveals significant differences in unit costs between the two scenarios. To enhance the effectiveness of the model, a discrete iterative algorithm with multiple loops was developed. Through a case study, it was observed that 1) joint strategies implemented within a finite time horizon were more cost-effective than those under infinite time, thus emphasizing the need for business managers to develop strategies within a finite time frame; 2) different production planning and efficiency levels had varying effects on the final joint strategy, necessitating customized strategies based on different production durations. Overall, the research gap regarding joint strategies within a finite-time context was addressed in this research, serving as a methodological foundation for practitioners to develop various strategies that minimize total costs across diverse real-world scenarios.</p></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024005623\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005623","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Joint optimization of production, inspection, and maintenance under finite time for smart manufacturing systems
Given the flexible and configurable characteristics of smart manufacturing systems with a limited time per manufacturing task, the assumption of infinite time for prostems is no longer applicable to the joint-control strategy. Consequently, a joint-control model that considers production, inspection, and maintenance within a finite-time scenario for smart manufacturing systems is proposed in this paper. The objective is to optimize overall production and maintenance functions to minimize the total system cost. Comparing the joint strategy under infinite time with the proposed finite-time approach reveals significant differences in unit costs between the two scenarios. To enhance the effectiveness of the model, a discrete iterative algorithm with multiple loops was developed. Through a case study, it was observed that 1) joint strategies implemented within a finite time horizon were more cost-effective than those under infinite time, thus emphasizing the need for business managers to develop strategies within a finite time frame; 2) different production planning and efficiency levels had varying effects on the final joint strategy, necessitating customized strategies based on different production durations. Overall, the research gap regarding joint strategies within a finite-time context was addressed in this research, serving as a methodological foundation for practitioners to develop various strategies that minimize total costs across diverse real-world scenarios.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.