{"title":"基于机器学习的高级驾驶辅助系统应用的最新进展","authors":"Guner Tatar , Salih Bayar , Ihsan Cicek , Smail Niar","doi":"10.1016/j.micpro.2024.105101","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the rise of traffic in modern cities has demanded novel technology to support the drivers and protect the passengers and other third parties involved in transportation. Thanks to rapid technological progress and innovations, many Advanced Driver Assistance Systems (A/DAS) based on Machine Learning (ML) algorithms have emerged to address the increasing demand for practical A/DAS applications. Fast and accurate execution of A/DAS algorithms is essential for preventing loss of life and property. High-speed hardware accelerators are vital for processing the high volume of data captured by increasingly sophisticated sensors and complex mathematical models’ execution of modern deep learning (DL) algorithms. One of the fundamental challenges in this new era is to design energy-efficient and portable ML-enabled platforms for vehicles to provide driver assistance and safety. This article presents recent progress in ML-driven A/DAS technology to offer new insights for researchers. We covered standard ML models and optimization approaches based on widely accepted open-source frameworks extensively used in A/DAS applications. We have also highlighted related articles on ML and its sub-branches, neural networks (NNs), and DL. We have also reported the implementation issues, bench-marking problems, and potential challenges for future research. Popular embedded hardware platforms such as Field Programmable Gate Arrays (FPGAs), central processing units (CPUs), Graphical Processing Units (GPUs), and Application Specific Integrated Circuits (ASICs) used to implement A/DAS applications are also compared concerning their performance and resource utilization. We have examined the hardware and software development environments used in implementing A/DAS applications and reported their advantages and disadvantages. We provided performance comparisons of usual A/DAS tasks such as traffic sign recognition, road and lane detection, vehicle and pedestrian detection, driver behavior, and multiple tasking. Considering the current research dynamics, A/DAS will remain one of the most popular application fields for vehicular transportation shortly.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"110 ","pages":"Article 105101"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in Machine Learning based Advanced Driver Assistance System applications\",\"authors\":\"Guner Tatar , Salih Bayar , Ihsan Cicek , Smail Niar\",\"doi\":\"10.1016/j.micpro.2024.105101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the rise of traffic in modern cities has demanded novel technology to support the drivers and protect the passengers and other third parties involved in transportation. Thanks to rapid technological progress and innovations, many Advanced Driver Assistance Systems (A/DAS) based on Machine Learning (ML) algorithms have emerged to address the increasing demand for practical A/DAS applications. Fast and accurate execution of A/DAS algorithms is essential for preventing loss of life and property. High-speed hardware accelerators are vital for processing the high volume of data captured by increasingly sophisticated sensors and complex mathematical models’ execution of modern deep learning (DL) algorithms. One of the fundamental challenges in this new era is to design energy-efficient and portable ML-enabled platforms for vehicles to provide driver assistance and safety. This article presents recent progress in ML-driven A/DAS technology to offer new insights for researchers. We covered standard ML models and optimization approaches based on widely accepted open-source frameworks extensively used in A/DAS applications. We have also highlighted related articles on ML and its sub-branches, neural networks (NNs), and DL. We have also reported the implementation issues, bench-marking problems, and potential challenges for future research. Popular embedded hardware platforms such as Field Programmable Gate Arrays (FPGAs), central processing units (CPUs), Graphical Processing Units (GPUs), and Application Specific Integrated Circuits (ASICs) used to implement A/DAS applications are also compared concerning their performance and resource utilization. We have examined the hardware and software development environments used in implementing A/DAS applications and reported their advantages and disadvantages. We provided performance comparisons of usual A/DAS tasks such as traffic sign recognition, road and lane detection, vehicle and pedestrian detection, driver behavior, and multiple tasking. Considering the current research dynamics, A/DAS will remain one of the most popular application fields for vehicular transportation shortly.</p></div>\",\"PeriodicalId\":49815,\"journal\":{\"name\":\"Microprocessors and Microsystems\",\"volume\":\"110 \",\"pages\":\"Article 105101\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microprocessors and Microsystems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141933124000966\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000966","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Recent advances in Machine Learning based Advanced Driver Assistance System applications
In recent years, the rise of traffic in modern cities has demanded novel technology to support the drivers and protect the passengers and other third parties involved in transportation. Thanks to rapid technological progress and innovations, many Advanced Driver Assistance Systems (A/DAS) based on Machine Learning (ML) algorithms have emerged to address the increasing demand for practical A/DAS applications. Fast and accurate execution of A/DAS algorithms is essential for preventing loss of life and property. High-speed hardware accelerators are vital for processing the high volume of data captured by increasingly sophisticated sensors and complex mathematical models’ execution of modern deep learning (DL) algorithms. One of the fundamental challenges in this new era is to design energy-efficient and portable ML-enabled platforms for vehicles to provide driver assistance and safety. This article presents recent progress in ML-driven A/DAS technology to offer new insights for researchers. We covered standard ML models and optimization approaches based on widely accepted open-source frameworks extensively used in A/DAS applications. We have also highlighted related articles on ML and its sub-branches, neural networks (NNs), and DL. We have also reported the implementation issues, bench-marking problems, and potential challenges for future research. Popular embedded hardware platforms such as Field Programmable Gate Arrays (FPGAs), central processing units (CPUs), Graphical Processing Units (GPUs), and Application Specific Integrated Circuits (ASICs) used to implement A/DAS applications are also compared concerning their performance and resource utilization. We have examined the hardware and software development environments used in implementing A/DAS applications and reported their advantages and disadvantages. We provided performance comparisons of usual A/DAS tasks such as traffic sign recognition, road and lane detection, vehicle and pedestrian detection, driver behavior, and multiple tasking. Considering the current research dynamics, A/DAS will remain one of the most popular application fields for vehicular transportation shortly.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.