{"title":"食品监测中检测到汞离子的掺氮碳量子点(NCQDs)","authors":"Di Shan, Huichuan Yu, Zhichao Yang, Hongda Li, Rulin Jia, Yue Zhang","doi":"10.1016/j.foodchem.2024.141308","DOIUrl":null,"url":null,"abstract":"<div><p>Using 2,3-diaminopyridine and citric acid as precursors, blue fluorescent nitrogen-doped carbon quantum dots (NCQDs) with a narrow size distribution (∼7.2 nm) were prepared and applied in the following assay for mercury ion detection at a weight ratio of 2,3-diaminopyridine:citric acid = 1:1 (0.2 g: 0.2 g, 20 mL for H<sub>2</sub>O), 220 °C, and 10 h. NCQDs was characterized by TEM, FT-IR, XPS, UV–Vis and EDS, and the prepared NCQDs display excitation-independent behavior due to less surface defects and uniform size. The optimal excitation and emission wavelengths of the NCQDs were 380 nm and 430 nm, respectively. Interestingly, the fluorescence of the NCQDs could be rapidly and selectively quenched by Hg<sup>2+</sup> within 9 min at room temperature without further modification. Under optimal conditions, the limit of detection (LOD) was measured to be at the nanomolar level (42.4 nmol/L) with a linear range of 0–5.0 μmol/L, and fluorescence analysis of NCQDs was successfully used for the qualitative and quantitative analysis of mercury ions in food samples. Furthermore, our results revealed that fluorescence quenching occurred under the common fluences of the inner filter effect, and the static quenching effect was authenticated in the process in which Hg<sup>2+</sup> coordinates with the NCQDs to form nonfluorescent complexes.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-doped carbon quantum dots (NCQDs) detected to mercury ions in food monitoring\",\"authors\":\"Di Shan, Huichuan Yu, Zhichao Yang, Hongda Li, Rulin Jia, Yue Zhang\",\"doi\":\"10.1016/j.foodchem.2024.141308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using 2,3-diaminopyridine and citric acid as precursors, blue fluorescent nitrogen-doped carbon quantum dots (NCQDs) with a narrow size distribution (∼7.2 nm) were prepared and applied in the following assay for mercury ion detection at a weight ratio of 2,3-diaminopyridine:citric acid = 1:1 (0.2 g: 0.2 g, 20 mL for H<sub>2</sub>O), 220 °C, and 10 h. NCQDs was characterized by TEM, FT-IR, XPS, UV–Vis and EDS, and the prepared NCQDs display excitation-independent behavior due to less surface defects and uniform size. The optimal excitation and emission wavelengths of the NCQDs were 380 nm and 430 nm, respectively. Interestingly, the fluorescence of the NCQDs could be rapidly and selectively quenched by Hg<sup>2+</sup> within 9 min at room temperature without further modification. Under optimal conditions, the limit of detection (LOD) was measured to be at the nanomolar level (42.4 nmol/L) with a linear range of 0–5.0 μmol/L, and fluorescence analysis of NCQDs was successfully used for the qualitative and quantitative analysis of mercury ions in food samples. Furthermore, our results revealed that fluorescence quenching occurred under the common fluences of the inner filter effect, and the static quenching effect was authenticated in the process in which Hg<sup>2+</sup> coordinates with the NCQDs to form nonfluorescent complexes.</p></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624029583\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624029583","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Nitrogen-doped carbon quantum dots (NCQDs) detected to mercury ions in food monitoring
Using 2,3-diaminopyridine and citric acid as precursors, blue fluorescent nitrogen-doped carbon quantum dots (NCQDs) with a narrow size distribution (∼7.2 nm) were prepared and applied in the following assay for mercury ion detection at a weight ratio of 2,3-diaminopyridine:citric acid = 1:1 (0.2 g: 0.2 g, 20 mL for H2O), 220 °C, and 10 h. NCQDs was characterized by TEM, FT-IR, XPS, UV–Vis and EDS, and the prepared NCQDs display excitation-independent behavior due to less surface defects and uniform size. The optimal excitation and emission wavelengths of the NCQDs were 380 nm and 430 nm, respectively. Interestingly, the fluorescence of the NCQDs could be rapidly and selectively quenched by Hg2+ within 9 min at room temperature without further modification. Under optimal conditions, the limit of detection (LOD) was measured to be at the nanomolar level (42.4 nmol/L) with a linear range of 0–5.0 μmol/L, and fluorescence analysis of NCQDs was successfully used for the qualitative and quantitative analysis of mercury ions in food samples. Furthermore, our results revealed that fluorescence quenching occurred under the common fluences of the inner filter effect, and the static quenching effect was authenticated in the process in which Hg2+ coordinates with the NCQDs to form nonfluorescent complexes.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.