各向同性相界处的 BiFeO3 薄膜静电和应变工程相结合

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Johanna Nordlander, Bastien F. Grosso, Marta D. Rossell, Aline Maillard, Bixin Yan, Elzbieta Gradauskaite, Nicola A. Spaldin, Manfred Fiebig, Morgan Trassin
{"title":"各向同性相界处的 BiFeO3 薄膜静电和应变工程相结合","authors":"Johanna Nordlander, Bastien F. Grosso, Marta D. Rossell, Aline Maillard, Bixin Yan, Elzbieta Gradauskaite, Nicola A. Spaldin, Manfred Fiebig, Morgan Trassin","doi":"10.1002/aelm.202400185","DOIUrl":null,"url":null,"abstract":"Multiferroic BiFeO<sub>3</sub> exhibits a morphotropic phase boundary at large compressive strain that merges metastable phases of tetragonal (T) and rhombohedral (R) character resulting in giant ferroelectric and electromechanical responses. To utilize this functionality in devices, it is essential to understand the response of these ferroelectric phases to the environment of a nanoscale heterostructure. Here, the emergence of ferroelectricity near the morphotropic phase boundary in BiFeO<sub>3</sub> is explored directly during thin-film growth, using optical second harmonic generation. It is found that the epitaxial films form at the growth temperature purely in the T phase with zero critical thickness for the spontaneous polarization. Signatures of monoclinic T-like and R-like phases only appear upon sample cooling. The robustness of a single-domain configuration in the high-temperature T phase is furthermore demonstrated during growth of capacitor-like metal | ferroelectric | metal heterostructures. Here, a reduction in tetragonality, rather than multidomain formation, lowers the electrostatic energy in the few-unit-cell thickness regime. For this lower tetragonality, density-functional calculations and scanning transmission electron microscopy point to the stabilization of a novel metastable monoclinic structure upon cooling toward room temperature. The synergistic combination of strain and electrostatic phase stabilization in BiFeO<sub>3</sub> heterostructures hence provides a basis for designing new ferroelectric phases and ultrathin ferroelectric devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"98 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Electrostatic and Strain Engineering of BiFeO3 Thin Films at the Morphotropic Phase Boundary\",\"authors\":\"Johanna Nordlander, Bastien F. Grosso, Marta D. Rossell, Aline Maillard, Bixin Yan, Elzbieta Gradauskaite, Nicola A. Spaldin, Manfred Fiebig, Morgan Trassin\",\"doi\":\"10.1002/aelm.202400185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiferroic BiFeO<sub>3</sub> exhibits a morphotropic phase boundary at large compressive strain that merges metastable phases of tetragonal (T) and rhombohedral (R) character resulting in giant ferroelectric and electromechanical responses. To utilize this functionality in devices, it is essential to understand the response of these ferroelectric phases to the environment of a nanoscale heterostructure. Here, the emergence of ferroelectricity near the morphotropic phase boundary in BiFeO<sub>3</sub> is explored directly during thin-film growth, using optical second harmonic generation. It is found that the epitaxial films form at the growth temperature purely in the T phase with zero critical thickness for the spontaneous polarization. Signatures of monoclinic T-like and R-like phases only appear upon sample cooling. The robustness of a single-domain configuration in the high-temperature T phase is furthermore demonstrated during growth of capacitor-like metal | ferroelectric | metal heterostructures. Here, a reduction in tetragonality, rather than multidomain formation, lowers the electrostatic energy in the few-unit-cell thickness regime. For this lower tetragonality, density-functional calculations and scanning transmission electron microscopy point to the stabilization of a novel metastable monoclinic structure upon cooling toward room temperature. The synergistic combination of strain and electrostatic phase stabilization in BiFeO<sub>3</sub> heterostructures hence provides a basis for designing new ferroelectric phases and ultrathin ferroelectric devices.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400185\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400185","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多铁性氧化铋(BiFeO3)在大压缩应变时会出现形态各向异性的相界,将具有四方(T)和斜方(R)特性的可迁移相合并,从而产生巨大的铁电和机电响应。要在设备中利用这种功能,就必须了解这些铁电相对纳米级异质结构环境的响应。在此,我们利用光学二次谐波发生技术,在薄膜生长过程中直接探索了 BiFeO3 中各向异性相边界附近铁电性的出现。研究发现,在生长温度下形成的外延薄膜纯粹处于 T 相,自发极化的临界厚度为零。单斜 T 相和 R 相的特征只有在样品冷却后才会出现。在类似电容器的金属 | 铁电 | 金属异质结构的生长过程中,进一步证明了高温 T 相中单畴构型的稳健性。在这里,四方性的降低,而不是多域的形成,降低了几单位电池厚度范围内的静电能量。对于这种较低的四方性,密度函数计算和扫描透射电子显微镜表明,在冷却至室温时,一种新的可蜕变单斜结构趋于稳定。因此,BiFeO3 异质结构中应变和静电相稳定的协同组合为设计新的铁电相和超薄铁电器件提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combined Electrostatic and Strain Engineering of BiFeO3 Thin Films at the Morphotropic Phase Boundary

Combined Electrostatic and Strain Engineering of BiFeO3 Thin Films at the Morphotropic Phase Boundary
Multiferroic BiFeO3 exhibits a morphotropic phase boundary at large compressive strain that merges metastable phases of tetragonal (T) and rhombohedral (R) character resulting in giant ferroelectric and electromechanical responses. To utilize this functionality in devices, it is essential to understand the response of these ferroelectric phases to the environment of a nanoscale heterostructure. Here, the emergence of ferroelectricity near the morphotropic phase boundary in BiFeO3 is explored directly during thin-film growth, using optical second harmonic generation. It is found that the epitaxial films form at the growth temperature purely in the T phase with zero critical thickness for the spontaneous polarization. Signatures of monoclinic T-like and R-like phases only appear upon sample cooling. The robustness of a single-domain configuration in the high-temperature T phase is furthermore demonstrated during growth of capacitor-like metal | ferroelectric | metal heterostructures. Here, a reduction in tetragonality, rather than multidomain formation, lowers the electrostatic energy in the few-unit-cell thickness regime. For this lower tetragonality, density-functional calculations and scanning transmission electron microscopy point to the stabilization of a novel metastable monoclinic structure upon cooling toward room temperature. The synergistic combination of strain and electrostatic phase stabilization in BiFeO3 heterostructures hence provides a basis for designing new ferroelectric phases and ultrathin ferroelectric devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信