{"title":"测量高散射气溶胶的非线性折射率","authors":"Xi Zeng , Haiyi Liu , Chuanqing Zhou","doi":"10.1016/j.optlastec.2024.111783","DOIUrl":null,"url":null,"abstract":"<div><p>The quality of air significantly impacts both the quality of life and the health of individuals. Femtosecond laser filament-induced nonlinear spectroscopy effectively measures both aerosol concentration and composition. Specifically, the nonlinear refractive index coefficient of the atmosphere directly influences the nonlinear propagation of femtosecond lasers in the air. The presence of aerosol particles in the atmosphere, particularly water droplets, may affect this nonlinear refractive index coefficient. However, the measurement of the nonlinear refractive index coefficient of highly scattering aerosols has not yet been reported. In this paper, a method to obtain the nonlinear refractive index coefficients of aerosols based on spectral changes is presented. Experiment measured the <em>n</em><sub>2</sub> coefficient of the air and water vapor aerosols respectively. Experimental results show that the n<sub>2</sub> coefficients are 2.5 × 10<sup>−19</sup> cm<sup>2</sup>/W and 2.4 × 10<sup>−19</sup> cm<sup>2</sup>/W respectively for air with incident energy of 48 μJ and 68 μJ, the n<sub>2</sub> coefficient are 2.5 × 10<sup>−19</sup> cm<sup>2</sup>/W and 2.3 × 10<sup>−19</sup> cm<sup>2</sup>/W respectively for aerosol with attenuation coefficients of 0.029 dB/cm. When the concentration of aerosols was increased to an attenuation coefficient of 0.045 dB/cm, the nonlinear refractive index coefficient of the aerosols was 3.1 × 10<sup>−19</sup> cm<sup>2</sup>/W. The experimental results indicated that low concentrations of aerosols did not affect the nonlinear refractive index coefficient of air, but as the concentration increased to a certain level, the nonlinear refractive index coefficient of air increased. This work provides a simpler and faster technical route for measuring the <em>n</em><sub>2</sub> coefficient of gaseous media, offers a new approach to the problem of measuring the nonlinear refractive index of thick, highly scattering media, and addresses the shortcomings of the z-scan.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111783"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of the nonlinear refractive index of highly scattering aerosols\",\"authors\":\"Xi Zeng , Haiyi Liu , Chuanqing Zhou\",\"doi\":\"10.1016/j.optlastec.2024.111783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quality of air significantly impacts both the quality of life and the health of individuals. Femtosecond laser filament-induced nonlinear spectroscopy effectively measures both aerosol concentration and composition. Specifically, the nonlinear refractive index coefficient of the atmosphere directly influences the nonlinear propagation of femtosecond lasers in the air. The presence of aerosol particles in the atmosphere, particularly water droplets, may affect this nonlinear refractive index coefficient. However, the measurement of the nonlinear refractive index coefficient of highly scattering aerosols has not yet been reported. In this paper, a method to obtain the nonlinear refractive index coefficients of aerosols based on spectral changes is presented. Experiment measured the <em>n</em><sub>2</sub> coefficient of the air and water vapor aerosols respectively. Experimental results show that the n<sub>2</sub> coefficients are 2.5 × 10<sup>−19</sup> cm<sup>2</sup>/W and 2.4 × 10<sup>−19</sup> cm<sup>2</sup>/W respectively for air with incident energy of 48 μJ and 68 μJ, the n<sub>2</sub> coefficient are 2.5 × 10<sup>−19</sup> cm<sup>2</sup>/W and 2.3 × 10<sup>−19</sup> cm<sup>2</sup>/W respectively for aerosol with attenuation coefficients of 0.029 dB/cm. When the concentration of aerosols was increased to an attenuation coefficient of 0.045 dB/cm, the nonlinear refractive index coefficient of the aerosols was 3.1 × 10<sup>−19</sup> cm<sup>2</sup>/W. The experimental results indicated that low concentrations of aerosols did not affect the nonlinear refractive index coefficient of air, but as the concentration increased to a certain level, the nonlinear refractive index coefficient of air increased. This work provides a simpler and faster technical route for measuring the <em>n</em><sub>2</sub> coefficient of gaseous media, offers a new approach to the problem of measuring the nonlinear refractive index of thick, highly scattering media, and addresses the shortcomings of the z-scan.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"181 \",\"pages\":\"Article 111783\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012416\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012416","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Measurement of the nonlinear refractive index of highly scattering aerosols
The quality of air significantly impacts both the quality of life and the health of individuals. Femtosecond laser filament-induced nonlinear spectroscopy effectively measures both aerosol concentration and composition. Specifically, the nonlinear refractive index coefficient of the atmosphere directly influences the nonlinear propagation of femtosecond lasers in the air. The presence of aerosol particles in the atmosphere, particularly water droplets, may affect this nonlinear refractive index coefficient. However, the measurement of the nonlinear refractive index coefficient of highly scattering aerosols has not yet been reported. In this paper, a method to obtain the nonlinear refractive index coefficients of aerosols based on spectral changes is presented. Experiment measured the n2 coefficient of the air and water vapor aerosols respectively. Experimental results show that the n2 coefficients are 2.5 × 10−19 cm2/W and 2.4 × 10−19 cm2/W respectively for air with incident energy of 48 μJ and 68 μJ, the n2 coefficient are 2.5 × 10−19 cm2/W and 2.3 × 10−19 cm2/W respectively for aerosol with attenuation coefficients of 0.029 dB/cm. When the concentration of aerosols was increased to an attenuation coefficient of 0.045 dB/cm, the nonlinear refractive index coefficient of the aerosols was 3.1 × 10−19 cm2/W. The experimental results indicated that low concentrations of aerosols did not affect the nonlinear refractive index coefficient of air, but as the concentration increased to a certain level, the nonlinear refractive index coefficient of air increased. This work provides a simpler and faster technical route for measuring the n2 coefficient of gaseous media, offers a new approach to the problem of measuring the nonlinear refractive index of thick, highly scattering media, and addresses the shortcomings of the z-scan.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems