Thieres George Freire da Silva , Eli Lino de Jesus , Marine Cirino Grossi Reis , Annik Frasso Corrêa Klink , George do Nascimento Araújo Júnior , Alexandre Maniçoba da Rosa Ferraz Jardim , Cleber Pereira Alves , José Edson Florentino de Morais , Carlos André Alves de Souza , Agda Raiany Mota dos Santos , Gabriel Ítalo Novaes da Silva , Jandis Ferreira Nunes de Araújo , Leonardo Francelino de Souza , Kaique Renan da Silva Salvador , Marcelo José da Silva , João Pedro Alves de Souza Santos , Wilma Roberta dos Santos , Fleming Sena Campos , Marcos Vinícius da Silva , Giovanna de Souza Sá Nascimento , Luciana Sandra Bastos de Souza
{"title":"在农业生态转型和限水条件下,仙人掌和高粱间作,无论基因型如何排列,都能提高系统的水分生产率","authors":"Thieres George Freire da Silva , Eli Lino de Jesus , Marine Cirino Grossi Reis , Annik Frasso Corrêa Klink , George do Nascimento Araújo Júnior , Alexandre Maniçoba da Rosa Ferraz Jardim , Cleber Pereira Alves , José Edson Florentino de Morais , Carlos André Alves de Souza , Agda Raiany Mota dos Santos , Gabriel Ítalo Novaes da Silva , Jandis Ferreira Nunes de Araújo , Leonardo Francelino de Souza , Kaique Renan da Silva Salvador , Marcelo José da Silva , João Pedro Alves de Souza Santos , Wilma Roberta dos Santos , Fleming Sena Campos , Marcos Vinícius da Silva , Giovanna de Souza Sá Nascimento , Luciana Sandra Bastos de Souza","doi":"10.1016/j.scienta.2024.113604","DOIUrl":null,"url":null,"abstract":"<div><p>The agroecological transition is an important step in changing from a conventional to agroecological production system. The cactus-sorghum intercropping can be recommended for the agroecological transition in a semi-arid environment depending on the cultivation configuration, that is, the type of forage cactus clone and sorghum cultivar. This study aimed to evaluate the effect of intercropping forage cactus clones (<em>Nopaleae</em> spp. and <em>Opuntia</em> spp.) with sorghum cultivars (<em>Sorghum bicolor</em>) on water use efficiency compared with single crops, to recommend the use of intercropping systems in conventional production units under agroecological transition. The study was conducted in the district of Serra Talhada, Pernambuco, Brazil over three crop seasons between 2017 and 2022, using cactus clones and sorghum cultivars in single-crop and intercropping configurations. The forage cactus clones evaluated were: IPA Sertania (IPA, <em>Nopalea cochenillifera</em>), Miuda (MIU, <em>Nopalea cochenillifera</em>), and Orelha de Elefante Mexicana (OEM, <em>Opuntia stricta</em>), while the sorghum cultivars evaluated were IPA 467, IPA SF11 and IPA 2502. The components of the soil water balance and dry matter yield were determined to calculate the following water indices: water use efficiency (WUE), water productivity of the production system (WPc<sub>R+ID</sub>), crop water productivity (WP<sub>CETa</sub>), and irrigation water productivity (WP<sub>ID</sub>). Including sorghum and cactus production system under water deficit increased the water productivity of the system due to the increase in dry matter (616 %). Regardless of the cactus clone or sorghum cultivar, there was an increase of 593 % in terms of WPc<sub>R+ID</sub>, 597 % in terms of WP<sub>CETa</sub> and 593 % in terms of WP<sub>ID</sub>, with little reduction in WUE (−2 %). The intercropping systems comprising the OEM clone and sorghum 288, OEM clone and sorghum 467, and the IPA clone and sorghum 467 showed a high level of crop water productivity due to the reduction in actual evapotranspiration. It can therefore be said that optimising the use of water in cactus systems under agroecological transition and water restriction depends on the type of cactus clone and sorghum cultivar.</p></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"338 ","pages":"Article 113604"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercropping cactus and sorghum under agroecological transition and water restriction increases the water productivity of the system regardless of the arrangement of the genotypes\",\"authors\":\"Thieres George Freire da Silva , Eli Lino de Jesus , Marine Cirino Grossi Reis , Annik Frasso Corrêa Klink , George do Nascimento Araújo Júnior , Alexandre Maniçoba da Rosa Ferraz Jardim , Cleber Pereira Alves , José Edson Florentino de Morais , Carlos André Alves de Souza , Agda Raiany Mota dos Santos , Gabriel Ítalo Novaes da Silva , Jandis Ferreira Nunes de Araújo , Leonardo Francelino de Souza , Kaique Renan da Silva Salvador , Marcelo José da Silva , João Pedro Alves de Souza Santos , Wilma Roberta dos Santos , Fleming Sena Campos , Marcos Vinícius da Silva , Giovanna de Souza Sá Nascimento , Luciana Sandra Bastos de Souza\",\"doi\":\"10.1016/j.scienta.2024.113604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The agroecological transition is an important step in changing from a conventional to agroecological production system. The cactus-sorghum intercropping can be recommended for the agroecological transition in a semi-arid environment depending on the cultivation configuration, that is, the type of forage cactus clone and sorghum cultivar. This study aimed to evaluate the effect of intercropping forage cactus clones (<em>Nopaleae</em> spp. and <em>Opuntia</em> spp.) with sorghum cultivars (<em>Sorghum bicolor</em>) on water use efficiency compared with single crops, to recommend the use of intercropping systems in conventional production units under agroecological transition. The study was conducted in the district of Serra Talhada, Pernambuco, Brazil over three crop seasons between 2017 and 2022, using cactus clones and sorghum cultivars in single-crop and intercropping configurations. The forage cactus clones evaluated were: IPA Sertania (IPA, <em>Nopalea cochenillifera</em>), Miuda (MIU, <em>Nopalea cochenillifera</em>), and Orelha de Elefante Mexicana (OEM, <em>Opuntia stricta</em>), while the sorghum cultivars evaluated were IPA 467, IPA SF11 and IPA 2502. The components of the soil water balance and dry matter yield were determined to calculate the following water indices: water use efficiency (WUE), water productivity of the production system (WPc<sub>R+ID</sub>), crop water productivity (WP<sub>CETa</sub>), and irrigation water productivity (WP<sub>ID</sub>). Including sorghum and cactus production system under water deficit increased the water productivity of the system due to the increase in dry matter (616 %). Regardless of the cactus clone or sorghum cultivar, there was an increase of 593 % in terms of WPc<sub>R+ID</sub>, 597 % in terms of WP<sub>CETa</sub> and 593 % in terms of WP<sub>ID</sub>, with little reduction in WUE (−2 %). The intercropping systems comprising the OEM clone and sorghum 288, OEM clone and sorghum 467, and the IPA clone and sorghum 467 showed a high level of crop water productivity due to the reduction in actual evapotranspiration. It can therefore be said that optimising the use of water in cactus systems under agroecological transition and water restriction depends on the type of cactus clone and sorghum cultivar.</p></div>\",\"PeriodicalId\":21679,\"journal\":{\"name\":\"Scientia Horticulturae\",\"volume\":\"338 \",\"pages\":\"Article 113604\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030442382400757X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030442382400757X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Intercropping cactus and sorghum under agroecological transition and water restriction increases the water productivity of the system regardless of the arrangement of the genotypes
The agroecological transition is an important step in changing from a conventional to agroecological production system. The cactus-sorghum intercropping can be recommended for the agroecological transition in a semi-arid environment depending on the cultivation configuration, that is, the type of forage cactus clone and sorghum cultivar. This study aimed to evaluate the effect of intercropping forage cactus clones (Nopaleae spp. and Opuntia spp.) with sorghum cultivars (Sorghum bicolor) on water use efficiency compared with single crops, to recommend the use of intercropping systems in conventional production units under agroecological transition. The study was conducted in the district of Serra Talhada, Pernambuco, Brazil over three crop seasons between 2017 and 2022, using cactus clones and sorghum cultivars in single-crop and intercropping configurations. The forage cactus clones evaluated were: IPA Sertania (IPA, Nopalea cochenillifera), Miuda (MIU, Nopalea cochenillifera), and Orelha de Elefante Mexicana (OEM, Opuntia stricta), while the sorghum cultivars evaluated were IPA 467, IPA SF11 and IPA 2502. The components of the soil water balance and dry matter yield were determined to calculate the following water indices: water use efficiency (WUE), water productivity of the production system (WPcR+ID), crop water productivity (WPCETa), and irrigation water productivity (WPID). Including sorghum and cactus production system under water deficit increased the water productivity of the system due to the increase in dry matter (616 %). Regardless of the cactus clone or sorghum cultivar, there was an increase of 593 % in terms of WPcR+ID, 597 % in terms of WPCETa and 593 % in terms of WPID, with little reduction in WUE (−2 %). The intercropping systems comprising the OEM clone and sorghum 288, OEM clone and sorghum 467, and the IPA clone and sorghum 467 showed a high level of crop water productivity due to the reduction in actual evapotranspiration. It can therefore be said that optimising the use of water in cactus systems under agroecological transition and water restriction depends on the type of cactus clone and sorghum cultivar.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.