激光定向能沉积制备的 HA188/SS316L 功能分级材料的异质微观结构和拉伸性能

IF 4.6 2区 物理与天体物理 Q1 OPTICS
{"title":"激光定向能沉积制备的 HA188/SS316L 功能分级材料的异质微观结构和拉伸性能","authors":"","doi":"10.1016/j.optlastec.2024.111770","DOIUrl":null,"url":null,"abstract":"<div><p>Laves/NbC phase formation due to Nb element segregation is detrimental to the mechanical properties of gradient materials fabricated using stainless steel and nickel-based superalloys. Here, a novel gradient design approach was employed by selecting Nb-free HA188 and SS316L as base materials, enabling uniform transition in element distribution and phase composition. The HA188/SS316L functionally graded material exhibited a heterogenous grain structure, which was also confirmed through the grain boundary distribution map and kernel average misorientation map. The deformation twins have been observed to significantly impede dislocation motion in the fracture region. Notably, the developed gradient material exhibited a yield strength of 392 MPa, an ultimate tensile strength of 608 MPa, and an elongation of 45.2 %, surpassing conventional gradient materials derived from nickel-based superalloys and stainless steels. This research provides valuable insights into the design of heterogeneous gradient materials, offering new perspectives for enhanced performance.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous microstructure and tensile properties of HA188/SS316L functionally graded materials prepared by laser directed energy deposition\",\"authors\":\"\",\"doi\":\"10.1016/j.optlastec.2024.111770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laves/NbC phase formation due to Nb element segregation is detrimental to the mechanical properties of gradient materials fabricated using stainless steel and nickel-based superalloys. Here, a novel gradient design approach was employed by selecting Nb-free HA188 and SS316L as base materials, enabling uniform transition in element distribution and phase composition. The HA188/SS316L functionally graded material exhibited a heterogenous grain structure, which was also confirmed through the grain boundary distribution map and kernel average misorientation map. The deformation twins have been observed to significantly impede dislocation motion in the fracture region. Notably, the developed gradient material exhibited a yield strength of 392 MPa, an ultimate tensile strength of 608 MPa, and an elongation of 45.2 %, surpassing conventional gradient materials derived from nickel-based superalloys and stainless steels. This research provides valuable insights into the design of heterogeneous gradient materials, offering new perspectives for enhanced performance.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012283\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012283","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

由于铌元素偏析而形成的Laves/NbC相不利于使用不锈钢和镍基超级合金制造的梯度材料的机械性能。在这里,我们采用了一种新颖的梯度设计方法,选择不含铌元素的 HA188 和 SS316L 作为基础材料,实现了元素分布和相组成的均匀过渡。HA188/SS316L 功能分级材料呈现出异质晶粒结构,晶界分布图和晶核平均错向图也证实了这一点。据观察,变形孪晶极大地阻碍了断裂区域的位错运动。值得注意的是,所开发的梯度材料的屈服强度为 392 兆帕,极限拉伸强度为 608 兆帕,伸长率为 45.2%,超过了从镍基超合金和不锈钢中提取的传统梯度材料。这项研究为异质梯度材料的设计提供了宝贵的见解,为提高性能提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous microstructure and tensile properties of HA188/SS316L functionally graded materials prepared by laser directed energy deposition

Laves/NbC phase formation due to Nb element segregation is detrimental to the mechanical properties of gradient materials fabricated using stainless steel and nickel-based superalloys. Here, a novel gradient design approach was employed by selecting Nb-free HA188 and SS316L as base materials, enabling uniform transition in element distribution and phase composition. The HA188/SS316L functionally graded material exhibited a heterogenous grain structure, which was also confirmed through the grain boundary distribution map and kernel average misorientation map. The deformation twins have been observed to significantly impede dislocation motion in the fracture region. Notably, the developed gradient material exhibited a yield strength of 392 MPa, an ultimate tensile strength of 608 MPa, and an elongation of 45.2 %, surpassing conventional gradient materials derived from nickel-based superalloys and stainless steels. This research provides valuable insights into the design of heterogeneous gradient materials, offering new perspectives for enhanced performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信