ERF转录因子SlERF7促进紫外线-C诱导的番茄酚类化合物的生物合成

IF 3.9 2区 农林科学 Q1 HORTICULTURE
Chenchen Wu , Chuanlong Men , Ling Yan , Jing Zhang , Yaqian Wang , Miao Chen , Changhong Liu , Lei Zheng
{"title":"ERF转录因子SlERF7促进紫外线-C诱导的番茄酚类化合物的生物合成","authors":"Chenchen Wu ,&nbsp;Chuanlong Men ,&nbsp;Ling Yan ,&nbsp;Jing Zhang ,&nbsp;Yaqian Wang ,&nbsp;Miao Chen ,&nbsp;Changhong Liu ,&nbsp;Lei Zheng","doi":"10.1016/j.scienta.2024.113643","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the molecular pathways of SlERF7 in regulating the synthesis and accumulation of phenolic compounds induced by postharvest UV-C in tomato fruit was deeply investigated by constructing transgenic plants. The findings revealed a pronounced induction of phenolic compounds accumulation following UV-C irradiation, coupled with heightened activities of PAL, 4CL, C4H, CHS, and CHI enzymes, alongside upregulated expression levels of <em>SlPAL5, SlC4H, Sl4CL, SlCHS2</em>, and <em>SlCHI</em> within <em>SlERF7</em> overexpressed fruit. Conversely, <em>SlERF7</em> knockout fruit exhibited diminished levels of phenolic compounds, enzyme activities, and gene expression after UV-C irradiation. Furthermore, subcellular localization analysis showed that SlERF7 was localized in the nucleus. Dual luciferase assay and electrophoretic mobility shift assay (EMSA) indicated that SlERF7 directly bound to the GCC-box in the <em>SlPAL5</em> promoter and activated its transcriptional activity. Therefore, it was confirmed that SlERF7 might positively promote UV-C-induced phenolic biosynthesis in postharvest tomato fruit by targeting the promoter of <em>SlPAL5</em>.</p></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"338 ","pages":"Article 113643"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ERF transcription factor SlERF7 promotes UV-C-induced biosynthesis of phenolic compounds in tomato\",\"authors\":\"Chenchen Wu ,&nbsp;Chuanlong Men ,&nbsp;Ling Yan ,&nbsp;Jing Zhang ,&nbsp;Yaqian Wang ,&nbsp;Miao Chen ,&nbsp;Changhong Liu ,&nbsp;Lei Zheng\",\"doi\":\"10.1016/j.scienta.2024.113643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the molecular pathways of SlERF7 in regulating the synthesis and accumulation of phenolic compounds induced by postharvest UV-C in tomato fruit was deeply investigated by constructing transgenic plants. The findings revealed a pronounced induction of phenolic compounds accumulation following UV-C irradiation, coupled with heightened activities of PAL, 4CL, C4H, CHS, and CHI enzymes, alongside upregulated expression levels of <em>SlPAL5, SlC4H, Sl4CL, SlCHS2</em>, and <em>SlCHI</em> within <em>SlERF7</em> overexpressed fruit. Conversely, <em>SlERF7</em> knockout fruit exhibited diminished levels of phenolic compounds, enzyme activities, and gene expression after UV-C irradiation. Furthermore, subcellular localization analysis showed that SlERF7 was localized in the nucleus. Dual luciferase assay and electrophoretic mobility shift assay (EMSA) indicated that SlERF7 directly bound to the GCC-box in the <em>SlPAL5</em> promoter and activated its transcriptional activity. Therefore, it was confirmed that SlERF7 might positively promote UV-C-induced phenolic biosynthesis in postharvest tomato fruit by targeting the promoter of <em>SlPAL5</em>.</p></div>\",\"PeriodicalId\":21679,\"journal\":{\"name\":\"Scientia Horticulturae\",\"volume\":\"338 \",\"pages\":\"Article 113643\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304423824007969\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824007969","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过构建转基因植株,深入研究了SlERF7调控采后紫外线-C诱导番茄果实中酚类化合物合成和积累的分子途径。研究结果表明,紫外线-C照射后,番茄果实中的PAL、4CL、C4H、CHS和CHI酶活性增强,同时SlPAL5、SlC4H、Sl4CL、SlCHS2和SlCHI在SlERF7过表达的果实中表达水平升高,从而明显诱导了酚类化合物的积累。相反,SlERF7基因敲除果实在紫外线-C照射后表现出酚类化合物、酶活性和基因表达水平降低。此外,亚细胞定位分析表明,SlERF7 定位于细胞核中。双荧光素酶试验和电泳迁移试验(EMSA)表明,SlERF7直接与SlPAL5启动子中的GCC-box结合并激活其转录活性。因此,证实 SlERF7 可通过靶向 SlPAL5 启动子,积极促进 UV-C 诱导的番茄采后果实中的酚类生物合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The ERF transcription factor SlERF7 promotes UV-C-induced biosynthesis of phenolic compounds in tomato

The ERF transcription factor SlERF7 promotes UV-C-induced biosynthesis of phenolic compounds in tomato

In this study, the molecular pathways of SlERF7 in regulating the synthesis and accumulation of phenolic compounds induced by postharvest UV-C in tomato fruit was deeply investigated by constructing transgenic plants. The findings revealed a pronounced induction of phenolic compounds accumulation following UV-C irradiation, coupled with heightened activities of PAL, 4CL, C4H, CHS, and CHI enzymes, alongside upregulated expression levels of SlPAL5, SlC4H, Sl4CL, SlCHS2, and SlCHI within SlERF7 overexpressed fruit. Conversely, SlERF7 knockout fruit exhibited diminished levels of phenolic compounds, enzyme activities, and gene expression after UV-C irradiation. Furthermore, subcellular localization analysis showed that SlERF7 was localized in the nucleus. Dual luciferase assay and electrophoretic mobility shift assay (EMSA) indicated that SlERF7 directly bound to the GCC-box in the SlPAL5 promoter and activated its transcriptional activity. Therefore, it was confirmed that SlERF7 might positively promote UV-C-induced phenolic biosynthesis in postharvest tomato fruit by targeting the promoter of SlPAL5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Horticulturae
Scientia Horticulturae 农林科学-园艺
CiteScore
8.60
自引率
4.70%
发文量
796
审稿时长
47 days
期刊介绍: Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信