与投影几何 Bq(n) 相关的加权邻接矩阵的特征基础

IF 1 3区 数学 Q1 MATHEMATICS
Murali K. Srinivasan
{"title":"与投影几何 Bq(n) 相关的加权邻接矩阵的特征基础","authors":"Murali K. Srinivasan","doi":"10.1016/j.laa.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>In a recent article <em>Projective geometries, Q-polynomial structures, and quantum groups</em> Terwilliger (arXiv:2407.14964) defined a certain weighted adjacency matrix, depending on a free (positive real) parameter, associated with the projective geometry, and showed (among many other results) that it is diagonalizable, with the eigenvalues and their multiplicities explicitly written down, and that it satisfies the <em>Q</em>-polynomial property (with respect to the zero subspace).</p><p>In this note we</p><ul><li><span>•</span><span><p>Write down an explicit eigenbasis for this matrix.</p></span></li><li><span>•</span><span><p>Evaluate the adjacency matrix-eigenvector products, yielding a new proof for the eigenvalues and their multiplicities.</p></span></li><li><span>•</span><span><p>Evaluate the dual adjacency matrix-eigenvector products and directly show that the action of the dual adjacency matrix on the eigenspaces of the adjacency matrix is block-tridiagonal, yielding a new proof of the <em>Q</em>-polynomial property.</p></span></li></ul></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 208-231"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenbasis for a weighted adjacency matrix associated with the projective geometry Bq(n)\",\"authors\":\"Murali K. Srinivasan\",\"doi\":\"10.1016/j.laa.2024.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a recent article <em>Projective geometries, Q-polynomial structures, and quantum groups</em> Terwilliger (arXiv:2407.14964) defined a certain weighted adjacency matrix, depending on a free (positive real) parameter, associated with the projective geometry, and showed (among many other results) that it is diagonalizable, with the eigenvalues and their multiplicities explicitly written down, and that it satisfies the <em>Q</em>-polynomial property (with respect to the zero subspace).</p><p>In this note we</p><ul><li><span>•</span><span><p>Write down an explicit eigenbasis for this matrix.</p></span></li><li><span>•</span><span><p>Evaluate the adjacency matrix-eigenvector products, yielding a new proof for the eigenvalues and their multiplicities.</p></span></li><li><span>•</span><span><p>Evaluate the dual adjacency matrix-eigenvector products and directly show that the action of the dual adjacency matrix on the eigenspaces of the adjacency matrix is block-tridiagonal, yielding a new proof of the <em>Q</em>-polynomial property.</p></span></li></ul></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"703 \",\"pages\":\"Pages 208-231\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003690\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003690","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇文章《投影几何、Q-多项式结构和量子群》(Projective geometries, Q-polynomial structures, and quantum groups)中,Terwilliger(arXiv:2407.14964)定义了一个与投影几何相关的、取决于自由(正实数)参数的加权邻接矩阵,并证明(除其他许多结果外)它是可对角的,特征值及其乘数被明确写出,而且它满足 Q-多项式性质(关于零子空间)。在本注释中,我们--为这个矩阵写下了一个明确的特征基础。--评估了邻接矩阵-特征向量乘积,得出了特征值及其乘积的新证明。--评估了对偶邻接矩阵-特征向量乘积,并直接证明了对偶邻接矩阵对邻接矩阵特征空间的作用是块对角的,得出了 Q 多项式性质的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenbasis for a weighted adjacency matrix associated with the projective geometry Bq(n)

In a recent article Projective geometries, Q-polynomial structures, and quantum groups Terwilliger (arXiv:2407.14964) defined a certain weighted adjacency matrix, depending on a free (positive real) parameter, associated with the projective geometry, and showed (among many other results) that it is diagonalizable, with the eigenvalues and their multiplicities explicitly written down, and that it satisfies the Q-polynomial property (with respect to the zero subspace).

In this note we

  • Write down an explicit eigenbasis for this matrix.

  • Evaluate the adjacency matrix-eigenvector products, yielding a new proof for the eigenvalues and their multiplicities.

  • Evaluate the dual adjacency matrix-eigenvector products and directly show that the action of the dual adjacency matrix on the eigenspaces of the adjacency matrix is block-tridiagonal, yielding a new proof of the Q-polynomial property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信