{"title":"采用不同液化对策对可液化土壤中的钢板桩码头进行抗震评估","authors":"","doi":"10.1016/j.compgeo.2024.106750","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic resilience assessment is essential for maintaining the functionality of sheet-pile wharves in liquefiable soils, preventing significant damages and minimizing losses during earthquakes. This study delves into the seismic resilience of sheet-pile wharves, focusing specifically on the effectiveness of four different liquefaction countermeasure techniques: anchor lengths, cement deep mixing, stone columns, and soil compaction. As such, an advanced two-dimensional (2D) Finite Element (FE) computational framework is established, motivated by a typical large-scale sheet-pile wharf configuration. Within this framework, a recently developed multi-yield surfaces plasticity model is employed, with the modeling parameters calibrated through undrained stress-controlled cyclic triaxial tests and a centrifuge test. Subsequently, the impacts of these liquefaction countermeasures on the seismic resilience of the sheet-pile wharves are systematically investigated. Additionally, the effectiveness of combining longer anchor lengths with the other three mitigation techniques to enhance the seismic resilience of the sheet-pile wharves are examined. It is demonstrated that the synergistic effects of different liquefaction countermeasures can further reduce the liquefaction potential, thereby improving the seismic resilience. Overall, the FE analysis technique and the resulting insights are highly significant for the seismic resilience assessment of equivalent sheet-pile wharves in liquefiable soils, particularly when implementing such liquefaction mitigation countermeasures.</p></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic resilience assessment of sheet-pile wharves in liquefiable soils using different liquefaction countermeasures\",\"authors\":\"\",\"doi\":\"10.1016/j.compgeo.2024.106750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismic resilience assessment is essential for maintaining the functionality of sheet-pile wharves in liquefiable soils, preventing significant damages and minimizing losses during earthquakes. This study delves into the seismic resilience of sheet-pile wharves, focusing specifically on the effectiveness of four different liquefaction countermeasure techniques: anchor lengths, cement deep mixing, stone columns, and soil compaction. As such, an advanced two-dimensional (2D) Finite Element (FE) computational framework is established, motivated by a typical large-scale sheet-pile wharf configuration. Within this framework, a recently developed multi-yield surfaces plasticity model is employed, with the modeling parameters calibrated through undrained stress-controlled cyclic triaxial tests and a centrifuge test. Subsequently, the impacts of these liquefaction countermeasures on the seismic resilience of the sheet-pile wharves are systematically investigated. Additionally, the effectiveness of combining longer anchor lengths with the other three mitigation techniques to enhance the seismic resilience of the sheet-pile wharves are examined. It is demonstrated that the synergistic effects of different liquefaction countermeasures can further reduce the liquefaction potential, thereby improving the seismic resilience. Overall, the FE analysis technique and the resulting insights are highly significant for the seismic resilience assessment of equivalent sheet-pile wharves in liquefiable soils, particularly when implementing such liquefaction mitigation countermeasures.</p></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X2400689X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X2400689X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Seismic resilience assessment of sheet-pile wharves in liquefiable soils using different liquefaction countermeasures
Seismic resilience assessment is essential for maintaining the functionality of sheet-pile wharves in liquefiable soils, preventing significant damages and minimizing losses during earthquakes. This study delves into the seismic resilience of sheet-pile wharves, focusing specifically on the effectiveness of four different liquefaction countermeasure techniques: anchor lengths, cement deep mixing, stone columns, and soil compaction. As such, an advanced two-dimensional (2D) Finite Element (FE) computational framework is established, motivated by a typical large-scale sheet-pile wharf configuration. Within this framework, a recently developed multi-yield surfaces plasticity model is employed, with the modeling parameters calibrated through undrained stress-controlled cyclic triaxial tests and a centrifuge test. Subsequently, the impacts of these liquefaction countermeasures on the seismic resilience of the sheet-pile wharves are systematically investigated. Additionally, the effectiveness of combining longer anchor lengths with the other three mitigation techniques to enhance the seismic resilience of the sheet-pile wharves are examined. It is demonstrated that the synergistic effects of different liquefaction countermeasures can further reduce the liquefaction potential, thereby improving the seismic resilience. Overall, the FE analysis technique and the resulting insights are highly significant for the seismic resilience assessment of equivalent sheet-pile wharves in liquefiable soils, particularly when implementing such liquefaction mitigation countermeasures.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.