Yongdong Wu;Bin He;Jingyuan Fang;Yuqi Hu;Xiaoliang Zeng;Linlin Ren;Rong Sun
{"title":"揭示聚合物热界面材料在热氧化条件下的降解机理","authors":"Yongdong Wu;Bin He;Jingyuan Fang;Yuqi Hu;Xiaoliang Zeng;Linlin Ren;Rong Sun","doi":"10.1109/TDMR.2024.3442781","DOIUrl":null,"url":null,"abstract":"With the growing power density and miniaturization of electronic devices, their thermal management and reliability are becoming more and more important. Polymer-based thermal interface materials, which are used to fill the gap between chip and heat sink, play an important role for the heat dissipation, but their reliability is rarely studied in academia, especially under thermo-oxidative condition. Here, a polymer-based thermal interface material, highly filled thermal conductive gel, is used as a model to study the degradation mechanism under thermo-oxidative condition. The results show that aging mainly deteriorates the mechanical performance instead of its intrinsic thermal conductivity. The elongation at break of aged sample is reduced and the corresponding modulus is increased as a function of aging time. Relaxation spectra indicate that the relaxation time of aged sample increases. The longer relaxation time of aged sample is attributed to the chain scission and oxidation of alky chain at interface and the depolymerization of polydimethylsiloxane chain, resulting in a more crosslinked polymer network. Thus, both interfacial aging and depolymerization of polymers contribute to the slowdown of polymer chain dynamics and degradation of mechanical properties. This work provides an insight into the degradation mechanism of thermal interface materials and guides the development of high-reliability thermal interface materials.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"514-521"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Degradation Mechanism of Polymer-Based Thermal Interface Materials Under Thermo-Oxidative Condition\",\"authors\":\"Yongdong Wu;Bin He;Jingyuan Fang;Yuqi Hu;Xiaoliang Zeng;Linlin Ren;Rong Sun\",\"doi\":\"10.1109/TDMR.2024.3442781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing power density and miniaturization of electronic devices, their thermal management and reliability are becoming more and more important. Polymer-based thermal interface materials, which are used to fill the gap between chip and heat sink, play an important role for the heat dissipation, but their reliability is rarely studied in academia, especially under thermo-oxidative condition. Here, a polymer-based thermal interface material, highly filled thermal conductive gel, is used as a model to study the degradation mechanism under thermo-oxidative condition. The results show that aging mainly deteriorates the mechanical performance instead of its intrinsic thermal conductivity. The elongation at break of aged sample is reduced and the corresponding modulus is increased as a function of aging time. Relaxation spectra indicate that the relaxation time of aged sample increases. The longer relaxation time of aged sample is attributed to the chain scission and oxidation of alky chain at interface and the depolymerization of polydimethylsiloxane chain, resulting in a more crosslinked polymer network. Thus, both interfacial aging and depolymerization of polymers contribute to the slowdown of polymer chain dynamics and degradation of mechanical properties. This work provides an insight into the degradation mechanism of thermal interface materials and guides the development of high-reliability thermal interface materials.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"24 4\",\"pages\":\"514-521\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10637991/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10637991/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unveiling the Degradation Mechanism of Polymer-Based Thermal Interface Materials Under Thermo-Oxidative Condition
With the growing power density and miniaturization of electronic devices, their thermal management and reliability are becoming more and more important. Polymer-based thermal interface materials, which are used to fill the gap between chip and heat sink, play an important role for the heat dissipation, but their reliability is rarely studied in academia, especially under thermo-oxidative condition. Here, a polymer-based thermal interface material, highly filled thermal conductive gel, is used as a model to study the degradation mechanism under thermo-oxidative condition. The results show that aging mainly deteriorates the mechanical performance instead of its intrinsic thermal conductivity. The elongation at break of aged sample is reduced and the corresponding modulus is increased as a function of aging time. Relaxation spectra indicate that the relaxation time of aged sample increases. The longer relaxation time of aged sample is attributed to the chain scission and oxidation of alky chain at interface and the depolymerization of polydimethylsiloxane chain, resulting in a more crosslinked polymer network. Thus, both interfacial aging and depolymerization of polymers contribute to the slowdown of polymer chain dynamics and degradation of mechanical properties. This work provides an insight into the degradation mechanism of thermal interface materials and guides the development of high-reliability thermal interface materials.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.