{"title":"使用 SA-AMG 高效计算电子束光刻技术中的充电效应","authors":"Wentao Ma;Kangpei Yao;Xiaoyang Zhong;Jie Liu","doi":"10.1109/LED.2024.3448504","DOIUrl":null,"url":null,"abstract":"When simulating charging effects in electron beam lithography (EBL) using the drift-diffusion recombination (DDR) model, traditional numerical iterative solvers face issues of slow computational speed and limited scalability. To solve this problem, we employ the Smoothed aggregation algebraic multigrid (SA-AMG) solver based on bi-conjugate gradient stabilized (BICGSTAB) and preconditioned conjugate gradient (PCG) to accelerate the computation of the DDR and Poisson equations separately. Compared to the Gauss-Seidel solver with a time complexity of \n<inline-formula> <tex-math>${O}\\text {(}{n}^{{2}}\\text {)}$ </tex-math></inline-formula>\n and the PCG, BICGSTAB solvers with a time complexity of \n<italic>O</i>\n(\n<inline-formula> <tex-math>${n}^{\\text {3/ {2}}}\\text {)}$ </tex-math></inline-formula>\n, the SA-AMG solver reduces the time complexity to \n<inline-formula> <tex-math>${O}\\text {(}{n}\\text {)}$ </tex-math></inline-formula>\n. This implies that at a charging time of \n<inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>\n s, the computation time for simulating charging effects with SA-AMG is 93, 296, and 646 times faster than the Gauss-Seidel solver when the grid point count of \n<inline-formula> <tex-math>${n} = 10^{{6}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$10^{{8}}$ </tex-math></inline-formula>\n, respectively. Furthermore, compared to the combined PCG and BICGSTAB solvers, the SA-AMG solver is 4, 7, and 13 times faster for the same grid point counts.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Calculation of Charging Effects in Electron Beam Lithography Using the SA-AMG\",\"authors\":\"Wentao Ma;Kangpei Yao;Xiaoyang Zhong;Jie Liu\",\"doi\":\"10.1109/LED.2024.3448504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When simulating charging effects in electron beam lithography (EBL) using the drift-diffusion recombination (DDR) model, traditional numerical iterative solvers face issues of slow computational speed and limited scalability. To solve this problem, we employ the Smoothed aggregation algebraic multigrid (SA-AMG) solver based on bi-conjugate gradient stabilized (BICGSTAB) and preconditioned conjugate gradient (PCG) to accelerate the computation of the DDR and Poisson equations separately. Compared to the Gauss-Seidel solver with a time complexity of \\n<inline-formula> <tex-math>${O}\\\\text {(}{n}^{{2}}\\\\text {)}$ </tex-math></inline-formula>\\n and the PCG, BICGSTAB solvers with a time complexity of \\n<italic>O</i>\\n(\\n<inline-formula> <tex-math>${n}^{\\\\text {3/ {2}}}\\\\text {)}$ </tex-math></inline-formula>\\n, the SA-AMG solver reduces the time complexity to \\n<inline-formula> <tex-math>${O}\\\\text {(}{n}\\\\text {)}$ </tex-math></inline-formula>\\n. This implies that at a charging time of \\n<inline-formula> <tex-math>$1~\\\\mu $ </tex-math></inline-formula>\\n s, the computation time for simulating charging effects with SA-AMG is 93, 296, and 646 times faster than the Gauss-Seidel solver when the grid point count of \\n<inline-formula> <tex-math>${n} = 10^{{6}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$10^{{8}}$ </tex-math></inline-formula>\\n, respectively. Furthermore, compared to the combined PCG and BICGSTAB solvers, the SA-AMG solver is 4, 7, and 13 times faster for the same grid point counts.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10644069/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10644069/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficient Calculation of Charging Effects in Electron Beam Lithography Using the SA-AMG
When simulating charging effects in electron beam lithography (EBL) using the drift-diffusion recombination (DDR) model, traditional numerical iterative solvers face issues of slow computational speed and limited scalability. To solve this problem, we employ the Smoothed aggregation algebraic multigrid (SA-AMG) solver based on bi-conjugate gradient stabilized (BICGSTAB) and preconditioned conjugate gradient (PCG) to accelerate the computation of the DDR and Poisson equations separately. Compared to the Gauss-Seidel solver with a time complexity of
${O}\text {(}{n}^{{2}}\text {)}$
and the PCG, BICGSTAB solvers with a time complexity of
O
(
${n}^{\text {3/ {2}}}\text {)}$
, the SA-AMG solver reduces the time complexity to
${O}\text {(}{n}\text {)}$
. This implies that at a charging time of
$1~\mu $
s, the computation time for simulating charging effects with SA-AMG is 93, 296, and 646 times faster than the Gauss-Seidel solver when the grid point count of
${n} = 10^{{6}}$
,
$10^{{7}}$
,
$10^{{8}}$
, respectively. Furthermore, compared to the combined PCG and BICGSTAB solvers, the SA-AMG solver is 4, 7, and 13 times faster for the same grid point counts.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.