使用 SA-AMG 高效计算电子束光刻技术中的充电效应

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wentao Ma;Kangpei Yao;Xiaoyang Zhong;Jie Liu
{"title":"使用 SA-AMG 高效计算电子束光刻技术中的充电效应","authors":"Wentao Ma;Kangpei Yao;Xiaoyang Zhong;Jie Liu","doi":"10.1109/LED.2024.3448504","DOIUrl":null,"url":null,"abstract":"When simulating charging effects in electron beam lithography (EBL) using the drift-diffusion recombination (DDR) model, traditional numerical iterative solvers face issues of slow computational speed and limited scalability. To solve this problem, we employ the Smoothed aggregation algebraic multigrid (SA-AMG) solver based on bi-conjugate gradient stabilized (BICGSTAB) and preconditioned conjugate gradient (PCG) to accelerate the computation of the DDR and Poisson equations separately. Compared to the Gauss-Seidel solver with a time complexity of \n<inline-formula> <tex-math>${O}\\text {(}{n}^{{2}}\\text {)}$ </tex-math></inline-formula>\n and the PCG, BICGSTAB solvers with a time complexity of \n<italic>O</i>\n(\n<inline-formula> <tex-math>${n}^{\\text {3/ {2}}}\\text {)}$ </tex-math></inline-formula>\n, the SA-AMG solver reduces the time complexity to \n<inline-formula> <tex-math>${O}\\text {(}{n}\\text {)}$ </tex-math></inline-formula>\n. This implies that at a charging time of \n<inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>\n s, the computation time for simulating charging effects with SA-AMG is 93, 296, and 646 times faster than the Gauss-Seidel solver when the grid point count of \n<inline-formula> <tex-math>${n} = 10^{{6}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$10^{{8}}$ </tex-math></inline-formula>\n, respectively. Furthermore, compared to the combined PCG and BICGSTAB solvers, the SA-AMG solver is 4, 7, and 13 times faster for the same grid point counts.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Calculation of Charging Effects in Electron Beam Lithography Using the SA-AMG\",\"authors\":\"Wentao Ma;Kangpei Yao;Xiaoyang Zhong;Jie Liu\",\"doi\":\"10.1109/LED.2024.3448504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When simulating charging effects in electron beam lithography (EBL) using the drift-diffusion recombination (DDR) model, traditional numerical iterative solvers face issues of slow computational speed and limited scalability. To solve this problem, we employ the Smoothed aggregation algebraic multigrid (SA-AMG) solver based on bi-conjugate gradient stabilized (BICGSTAB) and preconditioned conjugate gradient (PCG) to accelerate the computation of the DDR and Poisson equations separately. Compared to the Gauss-Seidel solver with a time complexity of \\n<inline-formula> <tex-math>${O}\\\\text {(}{n}^{{2}}\\\\text {)}$ </tex-math></inline-formula>\\n and the PCG, BICGSTAB solvers with a time complexity of \\n<italic>O</i>\\n(\\n<inline-formula> <tex-math>${n}^{\\\\text {3/ {2}}}\\\\text {)}$ </tex-math></inline-formula>\\n, the SA-AMG solver reduces the time complexity to \\n<inline-formula> <tex-math>${O}\\\\text {(}{n}\\\\text {)}$ </tex-math></inline-formula>\\n. This implies that at a charging time of \\n<inline-formula> <tex-math>$1~\\\\mu $ </tex-math></inline-formula>\\n s, the computation time for simulating charging effects with SA-AMG is 93, 296, and 646 times faster than the Gauss-Seidel solver when the grid point count of \\n<inline-formula> <tex-math>${n} = 10^{{6}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$10^{{8}}$ </tex-math></inline-formula>\\n, respectively. Furthermore, compared to the combined PCG and BICGSTAB solvers, the SA-AMG solver is 4, 7, and 13 times faster for the same grid point counts.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10644069/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10644069/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在使用漂移扩散重组(DDR)模型模拟电子束光刻(EBL)中的充电效应时,传统的数值迭代求解器面临计算速度慢和可扩展性有限的问题。为了解决这个问题,我们采用了基于双共轭梯度稳定(BICGSTAB)和预处理共轭梯度(PCG)的平滑聚集代数多网格(SA-AMG)求解器,分别加速 DDR 和泊松方程的计算。与时间复杂度为 ${O}\text {(}{n}^{2}}\text {)}$的高斯-赛德尔求解器和时间复杂度为 O( ${n}^{text {3/ {2}}}\text {)}$的 PCG、BICGSTAB 求解器相比,SA-AMG 求解器将时间复杂度降低到了 ${O}\text {(}{n}\text {)}$。这意味着在充电时间为 1~\mu $ s 时,当网格点数为 ${n} = 10^{{6}}$ 、 $10^{{7}}$ 、 $10^{{8}}$ 时,使用 SA-AMG 仿真充电效应的计算时间分别是高斯-赛德尔求解器的 93 倍、296 倍和 646 倍。此外,与 PCG 和 BICGSTAB 求解器相比,在相同网格点数下,SA-AMG 求解器的速度分别是 PCG 和 BICGSTAB 求解器的 4 倍、7 倍和 13 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Calculation of Charging Effects in Electron Beam Lithography Using the SA-AMG
When simulating charging effects in electron beam lithography (EBL) using the drift-diffusion recombination (DDR) model, traditional numerical iterative solvers face issues of slow computational speed and limited scalability. To solve this problem, we employ the Smoothed aggregation algebraic multigrid (SA-AMG) solver based on bi-conjugate gradient stabilized (BICGSTAB) and preconditioned conjugate gradient (PCG) to accelerate the computation of the DDR and Poisson equations separately. Compared to the Gauss-Seidel solver with a time complexity of ${O}\text {(}{n}^{{2}}\text {)}$ and the PCG, BICGSTAB solvers with a time complexity of O ( ${n}^{\text {3/ {2}}}\text {)}$ , the SA-AMG solver reduces the time complexity to ${O}\text {(}{n}\text {)}$ . This implies that at a charging time of $1~\mu $ s, the computation time for simulating charging effects with SA-AMG is 93, 296, and 646 times faster than the Gauss-Seidel solver when the grid point count of ${n} = 10^{{6}}$ , $10^{{7}}$ , $10^{{8}}$ , respectively. Furthermore, compared to the combined PCG and BICGSTAB solvers, the SA-AMG solver is 4, 7, and 13 times faster for the same grid point counts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信