Xinlun Xie;Guoxiang Shu;Jiacai Liao;Huaxing Pan;Shaochen Ma;Jiawei Tang;Siyuan Liu;Mingze Li;Wenlong He
{"title":"基于亚太赫兹波段 V 形正交光栅波导的新型双板束后向波振荡器","authors":"Xinlun Xie;Guoxiang Shu;Jiacai Liao;Huaxing Pan;Shaochen Ma;Jiawei Tang;Siyuan Liu;Mingze Li;Wenlong He","doi":"10.1109/LED.2024.3454508","DOIUrl":null,"url":null,"abstract":"A sub-terahertz band dual-sheet-beam backward wave oscillator (BWO) highlighted with wide tunable bandwidth and enhanced radiation power is presented in this letter. This design includes two key innovations: 1) a novel V-shaped orthogonal grating waveguide (VOGW) operating in TM\n<inline-formula> <tex-math>$_{{21}}^{\\text {++}}$ </tex-math></inline-formula>\n high-order mode (++ represents the electric field vectors within two beam tunnel regions are in-phase) is proposed, which exhibits higher coupling impedance compared with the traditional OGW; 2) a novel E-plane L-bend overmoded coupler with a tapered transition is designed for efficient power extraction of the TM\n<inline-formula> <tex-math>$_{{21}}^{\\text {++}}$ </tex-math></inline-formula>\n mode. For verification, an interaction circuit made of 40-period VOGW and two identical couplers was fabricated, and the measured results agreed well with simulation predictions having considered conduct loss and assembly errors. PIC simulation for this innovative BWO predicts a stable radiation power of 182.4-317.5 W across 246.8-265.6 GHz, demonstrating a power increment of up to 43 W (~15%) in comparison to the OGW based BWO.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2201-2204"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Dual-Sheet-Beam Backward Wave Oscillator Based on Sub-Terahertz Band V-Shaped Orthogonal Grating Waveguide\",\"authors\":\"Xinlun Xie;Guoxiang Shu;Jiacai Liao;Huaxing Pan;Shaochen Ma;Jiawei Tang;Siyuan Liu;Mingze Li;Wenlong He\",\"doi\":\"10.1109/LED.2024.3454508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sub-terahertz band dual-sheet-beam backward wave oscillator (BWO) highlighted with wide tunable bandwidth and enhanced radiation power is presented in this letter. This design includes two key innovations: 1) a novel V-shaped orthogonal grating waveguide (VOGW) operating in TM\\n<inline-formula> <tex-math>$_{{21}}^{\\\\text {++}}$ </tex-math></inline-formula>\\n high-order mode (++ represents the electric field vectors within two beam tunnel regions are in-phase) is proposed, which exhibits higher coupling impedance compared with the traditional OGW; 2) a novel E-plane L-bend overmoded coupler with a tapered transition is designed for efficient power extraction of the TM\\n<inline-formula> <tex-math>$_{{21}}^{\\\\text {++}}$ </tex-math></inline-formula>\\n mode. For verification, an interaction circuit made of 40-period VOGW and two identical couplers was fabricated, and the measured results agreed well with simulation predictions having considered conduct loss and assembly errors. PIC simulation for this innovative BWO predicts a stable radiation power of 182.4-317.5 W across 246.8-265.6 GHz, demonstrating a power increment of up to 43 W (~15%) in comparison to the OGW based BWO.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2201-2204\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10664469/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10664469/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Dual-Sheet-Beam Backward Wave Oscillator Based on Sub-Terahertz Band V-Shaped Orthogonal Grating Waveguide
A sub-terahertz band dual-sheet-beam backward wave oscillator (BWO) highlighted with wide tunable bandwidth and enhanced radiation power is presented in this letter. This design includes two key innovations: 1) a novel V-shaped orthogonal grating waveguide (VOGW) operating in TM
$_{{21}}^{\text {++}}$
high-order mode (++ represents the electric field vectors within two beam tunnel regions are in-phase) is proposed, which exhibits higher coupling impedance compared with the traditional OGW; 2) a novel E-plane L-bend overmoded coupler with a tapered transition is designed for efficient power extraction of the TM
$_{{21}}^{\text {++}}$
mode. For verification, an interaction circuit made of 40-period VOGW and two identical couplers was fabricated, and the measured results agreed well with simulation predictions having considered conduct loss and assembly errors. PIC simulation for this innovative BWO predicts a stable radiation power of 182.4-317.5 W across 246.8-265.6 GHz, demonstrating a power increment of up to 43 W (~15%) in comparison to the OGW based BWO.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.