具有亚微特斯拉平面内磁场探测能力的 4H-SiC 侧面磁晶体管

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hesham Okeil;Gerhard Wachutka
{"title":"具有亚微特斯拉平面内磁场探测能力的 4H-SiC 侧面磁晶体管","authors":"Hesham Okeil;Gerhard Wachutka","doi":"10.1109/LED.2024.3456752","DOIUrl":null,"url":null,"abstract":"In this letter, we report on the first 4H-SiC based lateral magnetotransistor. The sensor is fabricated in a 4H-SiC wafer scale Bipolar-CMOS-DMOS (BCD) technology and exhibits high sensitivity to in-plane magnetic fields, reaching \n<inline-formula> <tex-math>$960 \\; \\mu $ </tex-math></inline-formula>\nA/T. We study its electrical and magnetic characteristics and measure the achievable magnetic field detectivity. A minimum noise-limited detectivity of 273 nT/\n<inline-formula> <tex-math>$\\sqrt {\\text {Hz}}$ </tex-math></inline-formula>\n is achieved. Using TCAD simulations, we study the underlying transduction mechanism and identify electron hole plasma modulation as the main operating principle.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669586","citationCount":"0","resultStr":"{\"title\":\"4H-SiC Lateral Magnetotransistor With Sub-Microtesla In-Plane Magnetic Field Detectivity\",\"authors\":\"Hesham Okeil;Gerhard Wachutka\",\"doi\":\"10.1109/LED.2024.3456752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we report on the first 4H-SiC based lateral magnetotransistor. The sensor is fabricated in a 4H-SiC wafer scale Bipolar-CMOS-DMOS (BCD) technology and exhibits high sensitivity to in-plane magnetic fields, reaching \\n<inline-formula> <tex-math>$960 \\\\; \\\\mu $ </tex-math></inline-formula>\\nA/T. We study its electrical and magnetic characteristics and measure the achievable magnetic field detectivity. A minimum noise-limited detectivity of 273 nT/\\n<inline-formula> <tex-math>$\\\\sqrt {\\\\text {Hz}}$ </tex-math></inline-formula>\\n is achieved. Using TCAD simulations, we study the underlying transduction mechanism and identify electron hole plasma modulation as the main operating principle.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669586\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669586/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669586/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们报告了首个基于 4H-SiC 的横向磁晶体管。该传感器采用 4H-SiC 晶圆级双极-CMOS-DMOS (BCD) 技术制造,对平面磁场的灵敏度很高,达到了 960 \; \mu $ A/T。我们研究了它的电学和磁学特性,并测量了可实现的磁场检测率。最小噪声限制检测率为 273 nT/ $\sqrt {\text {Hz}}$。通过 TCAD 仿真,我们研究了底层传导机制,并确定电子空穴等离子体调制是其主要工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4H-SiC Lateral Magnetotransistor With Sub-Microtesla In-Plane Magnetic Field Detectivity
In this letter, we report on the first 4H-SiC based lateral magnetotransistor. The sensor is fabricated in a 4H-SiC wafer scale Bipolar-CMOS-DMOS (BCD) technology and exhibits high sensitivity to in-plane magnetic fields, reaching $960 \; \mu $ A/T. We study its electrical and magnetic characteristics and measure the achievable magnetic field detectivity. A minimum noise-limited detectivity of 273 nT/ $\sqrt {\text {Hz}}$ is achieved. Using TCAD simulations, we study the underlying transduction mechanism and identify electron hole plasma modulation as the main operating principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信