利用 ALD 氧化炉工程高效生产 DRAM 中的氧化锆电容器

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xinyi Tang;Yuanbiao Li;Songming Miao;Xiao Chen;Guangwei Xu;Di Lu;Shibing Long
{"title":"利用 ALD 氧化炉工程高效生产 DRAM 中的氧化锆电容器","authors":"Xinyi Tang;Yuanbiao Li;Songming Miao;Xiao Chen;Guangwei Xu;Di Lu;Shibing Long","doi":"10.1109/LED.2024.3455338","DOIUrl":null,"url":null,"abstract":"This manuscript aims to enhance the production efficiency while maintaining the electric properties of the dynamic random-access memory capacitor dielectric ZrO2 by optimizing its growth processes. This is achieved through oxidizer engineering by increasing the O3 flux (1k sccm to 10k sccm) and using an extremely fast pulse time (1.5 s) during the atomic layer deposition of ZrO2. This “short pulse - high oxidizer flux” method elevates the k value, effectively reduces leakage, and cuts off the growth time. The application of this method yields ZrO2-based capacitors of low leakage current densities (\n<inline-formula> <tex-math>${2}\\times {10}^{-{8}}$ </tex-math></inline-formula>\n A/cm2) and low equivalent oxide thicknesses of 0.55 nm (at 0.5 V, 10k sccm O3 flux), holding significant potential as a key facilitator for future ultra-high-density DRAM systems.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2114-2117"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidizer Engineering of ALD for Efficient Production of ZrO2 Capacitors in DRAM\",\"authors\":\"Xinyi Tang;Yuanbiao Li;Songming Miao;Xiao Chen;Guangwei Xu;Di Lu;Shibing Long\",\"doi\":\"10.1109/LED.2024.3455338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript aims to enhance the production efficiency while maintaining the electric properties of the dynamic random-access memory capacitor dielectric ZrO2 by optimizing its growth processes. This is achieved through oxidizer engineering by increasing the O3 flux (1k sccm to 10k sccm) and using an extremely fast pulse time (1.5 s) during the atomic layer deposition of ZrO2. This “short pulse - high oxidizer flux” method elevates the k value, effectively reduces leakage, and cuts off the growth time. The application of this method yields ZrO2-based capacitors of low leakage current densities (\\n<inline-formula> <tex-math>${2}\\\\times {10}^{-{8}}$ </tex-math></inline-formula>\\n A/cm2) and low equivalent oxide thicknesses of 0.55 nm (at 0.5 V, 10k sccm O3 flux), holding significant potential as a key facilitator for future ultra-high-density DRAM systems.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2114-2117\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669047/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669047/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本手稿旨在通过优化动态随机存取存储器电容器电介质 ZrO2 的生长过程,在提高生产效率的同时保持其电气特性。在 ZrO2 的原子层沉积过程中,通过增加 O3 通量(1k sccm 至 10k sccm)和使用极快的脉冲时间(1.5 秒)来实现氧化剂工程。这种 "短脉冲-高氧化剂通量 "方法提高了 k 值,有效减少了泄漏,并缩短了生长时间。应用这种方法制备的基于 ZrO2 的电容器漏电流密度低({2}\times {10}^{-{8}}$ A/cm2 ),等效氧化物厚度低至 0.55 nm(在 0.5 V、10k sccm O3 通量条件下),极有可能成为未来超高密度 DRAM 系统的关键推动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxidizer Engineering of ALD for Efficient Production of ZrO2 Capacitors in DRAM
This manuscript aims to enhance the production efficiency while maintaining the electric properties of the dynamic random-access memory capacitor dielectric ZrO2 by optimizing its growth processes. This is achieved through oxidizer engineering by increasing the O3 flux (1k sccm to 10k sccm) and using an extremely fast pulse time (1.5 s) during the atomic layer deposition of ZrO2. This “short pulse - high oxidizer flux” method elevates the k value, effectively reduces leakage, and cuts off the growth time. The application of this method yields ZrO2-based capacitors of low leakage current densities ( ${2}\times {10}^{-{8}}$ A/cm2) and low equivalent oxide thicknesses of 0.55 nm (at 0.5 V, 10k sccm O3 flux), holding significant potential as a key facilitator for future ultra-high-density DRAM systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信